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Abstract— This paper addresses the Moving Path Following
(MPF) motion control problem that consists of steering a robotic
vehicle along a specified geometric path expressed with respect
to a moving target frame. External disturbances that depend on
the operational environment such as maritime currents, wind
or rough terrain can affect the vehicle motion in a variety of
ways. Further, imperfections and simplifications of the vehicle
model can also lead to unknown disturbances. One way to
overcome this problem is by designing robust controllers to
perform the task. Existing literature on MPF control does not
consider these disturbances and further assume that the linear
and angular velocity of the target frame is known. In this paper,
these assumptions are relaxed through the design of robust
MPF control schemes. To this end, two robust control strategies
are proposed to solve the MPF control problem for a robotic
vehicle with actuation constraints and bounded disturbances.
Using Lyapunov-based arguments, both controllers are proven
to be Globally Asymptotically Stable with respect to the origin
of the MPF error. Experimental results using Autonomous
Underwater Vehicles demonstrate the viability of the proposed
control schemes for applications in a real world environment.

I. INTRODUCTION

Two main approaches concerning the motion control for
robotic vehicles are Trajectory Tracking and Path Following
schemes [1], [2], [3], [4]. In trajectory tracking control,
temporal constraints are explicitly defined for the vehicle
motion, while the path following schemes require the vehicle
to follow a geometric path without the need of satisfying
explicit time constraints. This paper considers a generaliza-
tion of the path following problem, termed the Moving Path
Following (MPF) motion control problem. The MPF motion
control problem consists of steering the robotic vehicle along
a priori specified geometric path expressed with respect to
a moving target frame. Such a problem finds applications
in scenarios such as convoy protection, marine life tracking,
etc. Further, the MPF problem retains all the characteristics
of the classical path following schemes [5] such as faster
convergence of the robot to the moving path.

The MPF control problem was first introduced in [6],
[7] for tracking of ground targets using Unmanned Aerial
Vehicles (UAVs) in 2D case. An extension to the 3D case
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Fig. 1. Illustration of the MPF scenario and coordinate frames.

was presented in [8]. The proposed MPF approach was
suitable for robotic vehicles such as UAVs that require
a minimum positive forward speed for its operation. For
robotic vehicles without such a restriction, a Lyapunov-
based MPF control approach was presented in [9] for a
translating target frame. Other control methods such as the
vector field method [10] and nonlinear model predictive
control [11] have been proposed to solve the MPF problem
for unicycle type robots. The limitations of the existing
literature in MPF control include: (i) the assumption that the
pose and velocities of the target frame are known accurately
and (ii) not explicitly considering the influence of external
disturbances that depend on the operational environment such
as maritime currents, wind or rough terrain. The existing
MPF control laws demonstrate severe loss of performance
in the presence of such disturbances and uncertainties. This
warrants investigation of robust control strategies to solve
the MPF control problem.

In the context of robust path following control, [12]
proposes a H∞ robust controller for ground vehicles in
order to address the disturbances caused by delays and
data packet dropouts. In [13], the planar path following
problem was addressed by using two sliding mode controllers
for both kinematic and dynamic models of the vehicle.
The path function is represented explicitly, which constrains
the flexibility of shape representation. Besides, the sliding
manifold for the kinematic controller is simply the angular



error from an angular reference designed to steer the vehicle
to the path. More recently, in [14], a sliding mode technique
combined with a predictive control strategy was developed
to compensate for the impact of the hydrodynamic damping
coupling on a 3D path following task for an Autonomous
Underwater Vehicle (AUV). In [3], a disturbance observer
for constant unknown ocean currents was designed to solve
the problem of dynamic positioning and way-point tracking
of an underactuated AUV. The development of robust control
laws for the MPF control problem has not been addressed in
the literature.

This paper extends the state-of-the-art in MPF control
by taking external, bounded disturbances such as unknown
maritime currents into consideration through the design of
robust MPF control laws. Further, we relax the assumption
that the velocities of the target frame are accurately known.
To this end, a Kalman filter is used to estimate the tar-
get linear and angular velocities, given the measurements
of the target pose. In order to address the environmental
disturbances, two variants of robust MPF control laws have
been proposed. The first strategy employs a First Order
Sliding Mode (FOSM) term to achieve robustness against the
bounded disturbances. The second strategy seeks to directly
compensate the disturbance by computing an estimate using
a disturbance observer. The proposed robust control laws are
proven to be Globally Asymptotically Stable with respect to
the origin of a conveniently defined MPF error signal in the
presence of bounded estimation errors of the target velocities
and environmental disturbances. The main contributions of
the paper are the design and experimental validation of
two variants of robust MPF control schemes. Experimental
results using Autonomous Underwater Vehicles demonstrate
the viability of the proposed control schemes for applications
in a real world environment.

The remainder of the paper is organized as follows.
Section II formulates the MPF problem addressed with a
description of the vehicle model. Section III discusses the
two proposed control schemes: (i) Robust MPF control with
FOSM and (ii) Robust MPF control with FOSM and a
Disturbance Observer. In Section IV, the experimental results
are illustrated and discussed, and finally Section V concludes
the paper.

II. PROBLEM FORMULATION

A. Kinematic Model for an Underactuated Vehicle

Consider an inertial frame of reference {I} and a body
frame {B} attached to the center of mass of the robotic
vehicle, as shown in Fig. 1. The kinematic model of the
vehicle moving in Rn with n = 2, 3 can be expressed by

ṗv(t) = Rv(t) vv + dv (1)

Ṙv(t) = Rv(t)S(ωv + dω)

where pv ∈ Rn denotes the position of the robot with
respect to the inertial frame {I}, Rv ∈ SO(n) denotes the
rotation matrix from the body frame {B} to frame {I},
vv ∈ Rn and ωv ∈ Rn(n−1)/2 are the linear and angular

velocities of the vehicle with respect to the body frame {B},
S(ωv) ∈ so(n) is the skew-symmetric matrix associated to
the angular velocity of the vehicle ωv , and the signals dv ∈
Rn, dω ∈ Rn(n−1)/2 are unknown kinematic disturbances.
Many different factors can be sources for these disturbances,
depending on the type of robotic vehicle and the operational
environment. Marine vehicles such as AUVs are affected by
unknown sea conditions that can induce unwanted external
velocities due to maritime currents and waves. In the case
of aerial vehicles, wind and internal dynamics can induce
unwanted disturbances in the kinematic model. In this work,
we consider the problem of controlling an underactuated
vehicle at the kinematic level, with the control signal defined
as

uv =

[
vf
ωv

]
(2)

where the body linear velocity vv in (1) is defined as vv =
[ vf 0 ]T (n = 2) or vv = [ vf 0 0 ]T (n = 3). This is
the case for vehicles where only the longitudinal velocity
vf ∈ R and the body angular velocity ωv ∈ Rn(n−1)/2 can
be controlled, such as some types of AUVs. We assume the
existence of an inner-loop autopilot controller for the vehicle
dynamics, which accurately tracks the linear and angular
velocity commands generated by the controller based on the
kinematic model of the robotic vehicle. Imperfect tracking
by the inner-loop autopilot controller can further contribute
to the velocity disturbances acting on the vehicle, that can
be lumped into the terms dv and dω .

B. Moving Path Following Problem

In the MPF control problem, as illustrated in Fig. 1,
the vehicle is tasked to follow an a priori specified path
expressed with respect to a moving target, which can be
another vehicle performing a maneuver, a beacon or any kind
of target whose position is assumed to be known or can be
estimated. Define a target frame {T} whose origin is attached
to the translating and rotating target. Let pt(t) ∈ Rn denote
the position of the target with respect to the frame {I}, and
ptd(γ) ∈ Rn be the desired path specified with respect to
the frame {T}, parameterized by γ ∈ R. For a given γ, ptd
denotes the position of a virtual reference point, expressed
with respect to the target frame {T}, that must be followed
by the vehicle. The virtual point ptd and its velocity can be
expressed with respect to the inertial frame as

pd = pt +Rt p
t
d(γ) (3)

ṗd = vt +Rt

(
∂ptd(γ)

∂γ
γ̇ + S(ωt) p

t
d(γ)

)
(4)

where Rt ∈ SO(n) is the rotation matrix of frame {T}
with respect to the inertial frame {I}, vt = ṗt is the linear
velocity of the target, and ωt ∈ Rn is the angular velocity
of the target frame, expressed in its body frame {T}.

In order to differentiate the MPF control scheme from the
trajectory tracking scheme, we impose

γ̇ = γ̇d + gerr (5)



where γ̇d is the desired nominal speed of the virtual point
and gerr is a correction signal to be defined in Section III-C.
The objective of gerr is to explicitly control the evolution of
the virtual point along the moving path, in order to enable
faster convergence of the vehicle to the moving path. The
robust MPF control problem can be stated as follows.

Problem (Robust Moving Path Following): Given a known
pose {pt, Rt} of the moving target frame {T} and the desired
path ptd(γ) with the speed assignment for the path parameter
γ given by (5), the Robust Moving Path Following control
problem is to design a control law for uv that steers the
vehicle towards the desired moving path (3) in the presence
of unknown kinematic disturbances dv , dω . Specifically, the
goal is to control the position of the nose of the vehicle,
or more generically, a point p̄v = pv + Rv ε placed at a
constant distance ε = [ ε1 ε2 ]T (n = 2) or ε = [ ε1 ε2 ε3 ]T

(n = 3) from the origin of the vehicle body frame {B}, such
that the error p̄v(t) − pd(t) has a globally asymptotically
stable equilibrium point at the origin. Further, it is required
to satisfy the desired speed assignment ‖γ̇ − γd‖ → 0 as
t→∞.

III. ROBUST MOVING PATH FOLLOWING
CONTROL

In this section, the two variants of the robust control
scheme, namely Robust MPF with FOSM and Robust MPF
with FOSM and Disturbance Observer are proposed to solve
the MPF motion control problem.

A. Robust MPF with FOSM

The MPF error associated to the vehicle [9] is defined as

ev = RT
v (p̄v − pd) (6)

Taking its time derivative and using (3), (4) and model (1),
the error dynamics is given by

ėv = ṘT
v (p̄v − pd) +RT

v ( ˙̄pv − ṗd)
= −S(ωv+dω) ev + vv + S(ωv+dω)ε+RT

v dv

−RT
v vt −RT

vRt

(
∂ ptd
∂γ

γ̇ + S(ωt) p
t
d(γ)

)
Using control signal (2) with the definition of vv yields

ėv = −S(ωv+dω) ev + ∆εuv + d

−RT
v vt −RT

vRt

(
∂ptd
∂γ

γ̇ + S(ωt) p
t
d(γ)

)
(7)

where ∆ε is a constant matrix that can take the form

∆ε =

[
1 −ε2
0 ε1

]
or ∆ε =

1 0 ε3 −ε2
0 −ε3 0 ε1
0 ε2 −ε1 0


for the planar (n = 2) and 3D (n = 3) cases, respectively.
Note that it is always possible to choose ε such that ∆ε is full
rank. Vector d ∈ Rn is the total disturbance. In the planar
case, it is given by

d =
[
RT
v sε

] [dv
dω

]
, sε =

[
−ε2
ε1

]

Remark 3.1: Notice that, by the triangle inequality, the
total disturbance d is bounded by ‖d‖ ≤ ‖dv‖+ ‖dω‖ ‖ε‖.

Theorem 1 (Robust MPF with FOSM): Consider an un-
deractuated robotic vehicle with dynamics described by (1)
and control signal given by (2). Let the MPF error dynamics
be described by (7), and consider that the configuration of
the vehicle {pv, Rv} ∈ Rn × SO(n) and the target frame
{pt, Rt} ∈ Rn × SO(n) are known. Consider also the
following assumptions:

i. Estimates of the target velocities v̂t, ω̂t are available.
ii. Total disturbance d and geometric path ptd(γ) are

bounded vector quantities.
Under these assumptions, the control law

uv = ∆†ε

(
−Kp ev +RT

v

(
v̂t +Rt S(ω̂t) p

t
d

)
+RT

v Rt
∂ptd
∂γ

γ̇ − wv
)

(8)

ensures that the origin ev = 0 of the MPF error is globally
asymptotically stable. In (8), matrix ∆†ε is the Moore-Penrose
pseudo-inverse of ∆ε, Kp ∈ Rn×n is a positive-definite gain
matrix and wv is a robustness term, given by

wv = ρ
ev
‖ev‖

(9)

where ρ is a scalar designed such that

ρ ≥ ‖dv‖+ ‖dω‖‖ε‖+ ‖ṽt‖+ ‖ω̃tt × ptd(γ)‖ (10)

and ṽt = vt − v̂t, ω̃t = ωt − ω̂t are estimation errors on the
target velocities.

Proof: Define the following Lyapunov candidate

V (ev) =
1

2
eTv ev > 0 ∀ev 6= 0 (11)

Differentiating it with respect to time and using the error
dynamics in (7), yields

V̇ (ev) = eTv ėv

= eTv

(
∆εuv + d−RT

v vt

−RT
vRt

(
∂ptd
∂γ

γ̇ + S(ωt) p
t
d(γ)

))
(12)

where we have used the fact that eTv S(ωv+dω) ev = 0, since
S(ωv + dω) is skew-symmetric. Substituting the control law
(8) in (12) yields

V̇ (ev) = −eTv Kp ev + eTv

(
D − ρ ev

‖ev‖

)
where D = d − RT

v (ṽt +Rt S(ω̃t) p
t
d). Since Kp > 0, the

first term is negative definite. Conversely, using the Cauchy-
Schwarz inequality, the second term is bounded by

eTv (D−wv) = eTvD − ρ‖ev‖ ≤ ‖ev‖ (‖D‖−ρ) (13)

By Remark 3.1 and using the triangle inequality, note that
‖D‖ is bounded by the quantity on the right-hand side
of (10). Therefore, if Assumptions (i), (ii) are satisfied, it
is always possible to choose ρ such that (10) is valid. In



these conditions, ρ ≥ ‖D‖ and eTv (D − wv) is negative
semi-definite by (13), making V̇ (ev) negative definite. Since
V (ev)→∞ when ‖ev‖ → ∞, the origin ev = 0 is globally
asymptotically stable.

Using the concept of Filippov solutions for discontinuous
differential equations [15], it is possible to show that (9)
has an infinite switching frequency in the origin ev = 0.
In practice, this frequency is finite due to nonlinear effects
and hardware limitations, but small values for ‖ev‖ in
the denominator can cause numerical issues and chattering
phenomena. To avoid this problem, (9) can be implemented
as

wv =

{
ρ ev
‖ev‖ , ‖ev‖ ≥ εw

ρ ev
εw

, ‖ev‖ < εw
(14)

where εw is a positive scalar. In this case, it is not possible
to demonstrate asymptotic stability, but it is possible to
guarantee that ‖ev‖ is bounded around the origin [16].

B. Robust MPF with Disturbance Observer

In the presence of large amplitude disturbances, it may be
difficult to tune the parameters ρ and εw so as to satisfy (10)
while reducing the chattering in the control inputs. In these
situations, an observer can be designed to provide an estimate
of the disturbance. Furthermore, this estimate can be used in
the control law to actively compensate the disturbance.

Without loss of generality, consider the planar problem,
wherein the vehicle pose {pv, Rv} ∈ R2×SO(2) is known
and the vehicle orientation is parameterized by the heading
angle ψ ∈ R, such that Rv = Rv(ψ) ∈ SO(2). Then,
the disturbance observer for the translational disturbance is
defined as {

˙̂pv = Rv vv + d̂v +K1 p̃v
˙̂
dv = K2 p̃v

(15)

where the estimation errors p̃v = pv − p̂v , d̃v = dv − d̂v and
the vehicle position pv are measured. For positive-definite
gains K1,K2 ∈ R2×2, the estimation errors p̃v , d̃v can be
proven to be asymptotically stable at the origin [17].

An observer for the rotational disturbance dω can be
designed as {

˙̂
ψ = ωv + d̂ω + kω1 ψ̃
˙̂
dω = kω2

ψ̃
(16)

where the estimation errors are defined as ψ̃ = ψ − ψ̂ and
d̃ω = dω − d̂ω , and the vehicle planar orientation ψ is
measured. Similarly, for positive gains kω1

, kω2
∈ R, the

estimation errors ψ̃, d̃ω can be proven to be asymptotically
stable at the origin.

Theorem 2 (Robust MPF with Disturbance Observer):
Consider an underactuated robotic vehicle under the
assumptions of Theorem 1. The control law (8) with wv
redefined as

wv = ρ
ev
‖ev‖

+ d̂ , d̂ =
[
RT
v sε

] [d̂v
d̂ω

]
(17)

ensures that the origin ev = 0 of the MPF error is globally
asymptotically stable, where ρ is a scalar designed such that

ρ ≥ ‖d̃v‖+ ‖d̃ω‖‖ε‖+ ‖ṽt‖+ ‖ω̃tt × ptd(γ)‖ (18)

Proof: The proof follows steps similar to the proof
of Theorem 1 with the candidate Lyapunov function V =
1
2e

T
v ev . Using the error dynamics (7) with control laws (8)

and (17), the time-derivative of the Lyapunov function is

V̇ (ev) = −eTv Kp ev + eTv

(
D̃ − ρ ev

‖ev‖

)
where D̃ = d̃ − RT

v (ṽt +Rt S(ω̃t) p
t
d) and d̃ is the total

estimation error, given by d̃ = d − d̂. As before, using the
Cauchy-Schwarz inequality, the second term is bounded by

eTv (D̃−wv) = eTv D̃ − ρ‖ev‖ ≤ ‖ev‖ (‖D̃‖−ρ) (19)

By Remark 3.1 and the triangle inequality, note that ‖D̃‖
is bounded by the quantity on the right-hand side of (18).
Therefore, if Assumptions (i) and (ii) of Theorem 1 are
satisfied, it is always possible to choose ρ such that (18)
is valid. In these conditions, ρ ≥ ‖D̃‖ and eTv (D̃ − wv)
is negative semi-definite by (13), making V̇ (ev) negative
definite. Since V (ev) → ∞ when ‖ev‖ → ∞, the origin
ev = 0 is globally asymptotically stable.

Remark 3.2: Note that according to (18), the sliding mode
gain ρ must overcome only the norm of the disturbance
estimation errors instead of the total norm of the disturbance,
as in (10). If the disturbance observer is properly designed,
this reduces the amount of chattering in the control inputs.

Remark 3.3: Using the induced norm for square matrices,
‖A‖ = sup{‖Ax‖ : x ∈ Rn with ‖x‖ = 1}, with A ∈
Rn×n, it is possible to derive explicit bounds for the norm
of ‖uv‖ during the steady state (ev = 0):

‖uv‖ ≤ ‖∆†ε‖
(
‖v̂t‖+‖ω̂t × ptd‖+

∣∣∣∣∣∣∣∣∂ptd∂γ
∣∣∣∣∣∣∣∣|γ̇|+ρ+‖d̂‖

)
Considering velocity actuation limits of the form ‖uv‖ ≤
umax, the maximum actuation norm umax must be greater
or equal the value on the right-hand side of this inequality,
so that the control input uv is kept inside the actuation limits
during the steady state. A similar remark can be made for
the previous controller, considering d̂ = 0.

Controller (8) differs from the works [9], [11] by the
robustness terms (9) or (17) and by taking the target frame
rotation into account on (3). That is, those works do not
address the problem of robustness in the presence of kine-
matic disturbances, rotating target frames and also consider
the target velocity vt to be known, an assumption that was
relaxed in our work. Furthermore, [9] does not consider the
design of the error correction term gerr term (presented in
Section III-C) in the path dynamics (5) to achieve faster
convergence of the vehicle to the moving path.



C. Path variable dynamics

As mentioned previously, imposing the dynamics (5) on
the path variable γ allows to explicitly control the progres-
sion of the virtual point pd along the moving path. This can
be done using the previously defined error correction term
gerr(t), that can be designed to delay or to stop the evolution
of the path variable γ if the vehicle is too far away from the
path. Using the gradient of the path error (6) squared with
respect to the path variable

ηv =
∂( 1

2e
T
v ev)

∂γ
= −eTv RT

v Rt

(
∂ptd(γ)

∂γ

)
(20)

we can define gerr = −kη sat(ηv) for some kη > 0.
The saturation function guarantees the boundedness for the
correction term. Its effect is to effectively delay the evolution
of the virtual point along the path by explicitly avoiding the
evolution of γ if the MPF error norm is too large. Besides,
to ensure that the effect of gerr will overcome the evolution
of γ when needed, it suffices to choose kη ≥ γ̇d.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The experiments were performed on Porto de Leixões
(Porto, Portugal) using a Light Autonomous Underwater
Vehicle (LAUV) from the Underwater Systems and Tech-
nology Laboratory (LSTS) at the Faculty of Engineering of
the University of Porto (FEUP). A LAUV is a portable and
lightweight vehicle that can be easily launched, operated and
recovered. The AUV operates under the DUNE and Neptus
environments, which are part of a software toolchain [18]
developed at LSTS. DUNE is the on-board software running
on the vehicles, comprising all the software needed for
communications, navigation, control, maneuvering, plan ex-
ecution and supervision of multiple types of robotic vehicles.
The control algorithms were implemented using C++, on
DUNE. Neptus is the software used for command and control
of the AUV, comprising many typical functions needed for a
typical mission, such as planning, execution and post-mission
analysis.

A simulated vehicle was used as a target, whereas the
AUV was used to perform the MPF task around the target,
as shown in Figure 2. The target vehicle performs a loiter
maneuver with the radius of 60m in the counter-clockwise
direction and continuously transmits its position (computed
from GPS measurements) over Wi-Fi to the AUV, which
executes the MPF control law. The control algorithm for the
target vehicle is a vector field method [19]. The desired path
for the AUV is a circle centered at the target with the radius
of 25m. More precisely, it is parameterized by

ptd(γ) = R

[
cos(γ/R)
sin(γ/R)

]
where R = 20m. Note that, in this particular case,
‖∂ptd(γ)/∂γ‖ = 1 ∀γ, which means that the path variable γ
coincides with the path arc length. For the construction of the
path error ev , the value ε =

[
1 0

]T
was used. The controller

Fig. 2. Neptus console. Simulated target follows a loitering maneuver
while the LAUV executes the Robust MPF controllers.

gain matrix was chosen as Kp = diag(0.2, 0.2). The gain
for the error correction term was chosen as kη = 4, and the
desired nominal speed of the virtual point is γ̇d = 1m/s.

B. Kalman Filter for Target Velocity Estimation

To achieve accurate estimates for the target velocities, a
linear Kalman filter was designed. Considering the planar
case, the target can be approximated as a moving rigid body
with a constant velocity, while its acceleration is considered
as a random variable drawn from a Gaussian distribution.
Under this assumption, the target is modeled as

ṗt = vt , v̇t = at

ψ̇t = ωt , ω̇t = αt

where ψt is the heading angle of the target, and at, αt
are the target linear and angular accelerations drawn from
Gaussian distributions with zero mean and covariances Σ2

p =
diag(0.1, 0.1), σ2

p = 10−4, respectively. This linear model
can be discretized using a zero order hold (ZOH), yielding
a discrete linear, time-invariant model whose states are the
target position, angle and velocities at each sample time.
The measured outputs are the target position and orientation
angle, sent through Wi-Fi to the AUV with a frequency of
1Hz.

The Kalman filter is implemented according to the pre-
dict/update strategy. Every sampling instant, a new prediction
of the target pose and velocities are computed, and the update
step is computed when a new Wi-Fi message containing a
position/angle measurement is received from the simulated
target vehicle. If no data from the simulated target is received
for more than 10 s, the vehicle considers pt to be fixed at
the last position received and v̂t = 0. The measurement
noise covariances were chosen as Σ2

m = diag(0.1, 0.1) and
σ2
m = 10−4. The initial target state covariances are: 2m for

the position, 1 rad for the orientation, 0.1m/s and 0.1 rad/s
for the linear and angular velocities.



C. Experimental Results

First, we present the results obtained by using the nominal
MPF controller with no robustness term (ρ = 0) from [9],
[11] that forms the base controller for performance evaluation
of the proposed robust MPF schemes. The network router
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Fig. 3. Trajectories using the nominal MPF controller.
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Fig. 4. Results for the nominal MPF controller.

was located on the northeast part of Fig. 3, close to the
origin of the inertial frame. Data loss can be noticed in
the trajectory of pd on the distant southwest side on Fig. 3,
where the vehicle failed to receive the position of the target
for a couple of moments due to the distance from the
router. This can be noticed in the MPF error shown in
Fig. 4, around the time mark of 1400 s. Thereafter, the norm
of the MPF error remains bounded by 3m. The velocity
control commands reach saturation during the transient and

on occasional moments of communication losses, but remain
within the actuation limits during most of the experiment (see
Remark 3.3).
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Fig. 5. Trajectories using the Robust MPF controller with FOSM term
(RMPF-FOSM).
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Fig. 6. Results for the Robust MPF controller with FOSM term (RMPF-
FOSM).

Figure 5 shows the vehicle trajectory obtained with the
Robust MPF controller with FOSM (Theorem 1) with ρ =
0.2 and εw = 0.5. Figure 6 illustrates the MPF error and
the generated control signals. The norm of the MPF error
remains bounded by less than 2m, unless on the farthest
point from the router, where loss of data packages was
observed. The MPF error converges to a neighborhood of
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Fig. 7. Trajectories using the Robust MPF controller with FOSM term and
Disturbance Observer (RMPF-FOSM-DO).

the origin due to the implementation of the control law
using (8) and (14). As expected, chattering was observed
in the linear and angular velocity commands. However, the
control signals remain within their actuation limits, inducing
a practical sliding mode behavior in the MPF error, as
observed in Fig. 6. The norm of the MPF error is smaller for
the robust MPF with FOSM scheme. The dynamics during
sliding (ev = 0) is invariant to disturbances bounded by ρ,
provided that (10) is satisfied. Lastly, note the action of the
error correction term gerr during the moment around 400 s
where communications were lost. It controls the progression
of the virtual point along the moving path in order to enable
faster convergence of the AUV. Once the MPF error starts to
grow, gerr slows down the evolution of γ, effectively waiting
until the vehicle is able to follow the path.

Figures 7 and 8 show the results for the Robust MPF with
FOSM and Disturbance Observer (Theorem 2) with ρ = 0.2
and εw = 0.5. The gains for the disturbance observer were
obtained using the pole placement method such that the de-
sired observer response is critically damped with approx. 20 s
of rising time. It is evident from Fig. 7 that this experiment
suffered significant losses in the communications, with no
data being received by the AUV during several minutes until
the network was restored near the point {−150m,−150m}.
In this case, since no data from the target was received
for more than 10 s, the follower vehicle considers pt to be
fixed, resulting in a stationary circular maneuver around the
point {−150m,−50m}. After the communications were re-
established around the time mark of 1250 s, the MPF error
converges to the origin with a significantly smaller norm
than in the classical MPF (Fig. 4) and in the Robust MPF
with FOSM (Fig. 6), thereby demonstrating superior, robust
performance over the nominal MPF control scheme. There
is an evident reduction on the chattering level on the control
signals when compared to the Robust MPF with FOSM
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Fig. 8. Results for the Robust MPF controller with FOSM term and
Disturbance Observer (RMPF-FOSM-DO).

(Fig. 6), which is a consequence of the use of the disturbance
estimators along with the FOSM term, as mentioned in
Remark 3.2. The improvement in the chattering levels can
also be noticed from the FOSM term signal wv in Fig. 8.
The components of the estimated disturbances d̂v and d̂ω are
shown in Fig. 8.

D. Simulation Results

This section presents simulation results in order to facil-
itate comparisons between the proposed robust MPF con-
trol laws and the nominal MPF control. These simulations
were performed in the hardware-in-the-loop setup, where the
simulation parameters were set identical to the experiments.
Constant maritime currents of 0.1m/s to the North and East
were simulated. DUNE has an in-built simulator that simu-
lates sensor and actuator dynamics, as well as the dynamic
model of the AUV. The control commands generated by
the MPF controllers are provided as velocity inputs to the
detailed dynamic model.

Figure 9 shows a comparison between the nominal MPF
controller (ρ = 0) and the proposed robust MPF schemes.
The value ρ = 0.2 is the same as the one used in the
experiments and is enough to overcome the norm of the
total disturbance due to the simulated maritime currents (see
inequality (10)). Notice how the norm of the MPF error
in the robust MPF schemes is noticeably smaller than in
the nominal MPF controller, and how the chattering level
in simulation is much smaller than the value obtained in
practice. This is expected because the chattering performance
of sliding mode-based controllers tend to degrade when
unmodeled dynamics are present in the control channel [20].
Furthermore, the amount of chattering in the control inputs
in the Robust MPF with FOSM and Disturbance Observer
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Fig. 9. Comparison between the nominal MPF and the proposed Robust
MPF schemes.

(RMPF-FOSM-DO) is indeed smaller than in the Robust
MPF with FOSM (RMPF-FOSM) scheme (see Remark 3.2),
the same result observed in the experiments.

V. CONCLUSIONS
This work addressed the Robust MPF problem for un-

deractuated vehicles, such as an AUV. Two robust MPF
control schemes were proposed, ensuring asymptotic stability
of the origin of the MPF error in the presence of bounded
disturbances acting on the vehicle and inaccurate estimates
for the target velocities. The proposed control schemes were
validated experimentally using an AUV and it was demon-
strated that their performance is superior over the nominal
MPF control technique. Additionally, it was observed that
the use of disturbance observers for active compensation
of the bounded kinematic disturbances can reduce the level
of chattering on the control signals by reducing the total
amount of disturbance that the FOSM term must compensate.
Satisfactory performance was achieved in the presence of
unmodeled dynamics of the inner-loop controller for the
actuators and unknown kinematic disturbances acting on the
vehicle.
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