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This paper addresses the design of a stabilizing continuous time sampled-data Nonlinear
Model Predictive Control (NMPC) law to solve the Moving Path Following (MPF) motion
control problem for constrained under-actuated robotic vehicles. In this scenario, the robotic
vehicle is tasked to converge to a desired geometric path, expressed with respect to a moving
frameof reference, while satisfying the actuation constraints. This control problem is addressed
in the NMPC framework. Specifically, first a suboptimal Lyapunov-based nonlinear auxiliary
control law is designed to solve the MPF problem. Then, the latter is used for the design of a
suitable terminal set and terminal cost of theMPC controller to enforce closed-loop guarantees.
Exploiting the properties of the auxiliary control law, we show that for a suitable selection of
the input constraints, the terminal set can be removed, resulting in a global region of attraction
of the proposed controller. Simulation results are provided to illustrate the proposed control
strategy.

I. Introduction

The motion control problem of under-actuated vehicles has been extensively investigated, where the proposed control
approaches can be broadly classified into Trajectory Tracking and Path Following (PF) schemes. Trajectory tracking

schemes require the robotic vehicle to converge to a reference trajectory with temporal constraints. On the contrary, the
Path Following scheme requires the robotic vehicle to follow a given geometric path at a desired speed without temporal
specifications. A detailed discussion on the trajectory tracking and path following schemes can be found in [1, 2]. In
a classical PF scheme, the reference geometric path is stationary or fixed with respect to the frame of reference. An
interesting motion control problem arises when the frame of reference of the geometric path itself is moving or varies
with respect to time. This leads to a generalized Path Following motion control problem termed as the Moving Path
Following (MPF) problem introduced in [3–5]. The Moving Path Following problem arises in applications such as
tracking a moving target [6, 7], autonomous landing of Unmanned Aerial Vehicle (UAV) or docking of an Autonomous
Underwater Vehicle (AUV) on a moving platform [8], and target estimation and tracking problems where the robot tracks
a moving target while performing observability based maneuvers in order to estimate the target position [9, 10]. The
motion control problem that arises in such applications cannot be cast in a classical path following/trajectory tracking
framework with stability and robustness guarantees, due to the implicit time constraints imposed by the moving target
with possibly varying linear and angular velocities. Further, the problem is more involved when explicitly considering
the state and input constraints of the system which is of significant practical importance.

A large body of literature use Lyapunov based methods to design the classical path following controllers and prove
the stability properties of such controllers. See [1, 11] and references therein. A recent work in [3] proposed and
solved the unconstrained MPF problem for fixed-wing UAVs and stability of such a controller was demonstrated using
Lyapunov based arguments. These results however do not explicitly account for the system constraints and are therefore
applicable in a limited region where the control inputs do not violate the system constraints. Model Predictive Control
(MPC), owing to its ability to explicitly handle system constraints, has emerged as an attractive alternative for control
design of constrained systems. The seminal work in the design of provably stable MPC for nonlinear systems, termed
Nonlinear Model Predictive Control (NMPC), presented in [12, 13] has accelerated its application to constrained
nonlinear systems. Motivated by these observations, this paper proposes the design of a provably stable, continuous
time sampled-data NMPC for the MPF motion control problem for a constrained under-actuated robotic vehicle. To
this end, we extend the result of a Nonlinear MPC scheme for Path Following control of constrained under-actuated
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Fig. 1 Moving Path Following framework

vehicle proposed in [14] and adapt it to the constrained MPF problem. The constrained MPF motion control problem is
formulated as an NMPC regulation problem using a conveniently defined error space and its stability is guaranteed
through an appropriate design of terminal cost function and terminal constraint set. Motivated by the results of classical
path following control, a Lyapunov-based nonlinear auxiliary control law is designed to solve the unconstrained MPF
problem, that forms a crucial step towards the design of terminal cost and terminal constraint set. Furthermore, we show
that the terminal constraint set can be excluded by choosing a bounded input constraint set over which a modified version
of the auxiliary control law is always feasible. The results are validated through simulations where an under-actuated
robot, modeled as unicycle kinematics is tracking a known target.

The remainder of the paper is organized as follows. The constrained MPF following problem is defined in Section
II. Section III solves the unconstrained MPF control problem and presents the design of a Lyapunov-based nonlinear
control law that forms a crucial result for the design of terminal cost function and terminal constraint set of the NMPC
problem. The main result of design of a stabilizing continuous time sampled-data NMPC is presented in Section IV.
Simulation results are presented in Section V followed by conclusions in Section VI.

II. Problem Definition
Consider an inertial reference frame {I} and a target frame {T} attached to a moving target with unknown dynamics.

The position and the linear velocity of the target with respect to the inertial frame is denoted as pI
t ∈ R2 and vI

t ∈ R2,
respectively, and is assumed to be known. Let pT

d
: R → R2 be a fixed reference geometric path parameterized by

γ ∈ R expressed in {T} frame and Ûγd ∈ R be the desired speed assignment. The parameter γ could be the arc length
along the reference path and the value of γ could be seen as a virtual point along the reference path. Then, the speed
assignment Ûγd dictates the evolution of the virtual point over time. Roughly speaking, the control objective is to make
the robotic vehicle converge to vicinity of this virtual point. As an example, consider the scenario where a robotic
vehicle is required to circumnavigate the moving target shown in Figure 1b and the associated coordinated frames in
Figure 1a. Clearly, the reference geometric path moves along with the target at a velocity dictated by its motion. Notice
that the reference geometric path imposes spatial constraints, while the temporal constraints are indirectly imposed by
the moving target. Hence, such problems cannot be dealt in a classical path following framework and demands solution
to a moving path following motion control problem.

The robotic vehicle is modeled using the kinematic model for an under-actuated vehicle given as,

ÛpI
r (t) = RI

R(t)vR
r (t) (1)

ÛRI
R(t) = RI

R(t)S(ωr )

where pI
r ∈ R2 is the position of the robotic vehicle expressed in inertial frame, vR

r (t) = [v f (t) 0]T is the linear velocity
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of the vehicle expressed in the robot body frame {R} and ωr (t) is the angular velocity of the robotic vehicle. The
rotation matrix RI

R(t) represents the orientation of the robot frame {R} with respect to the inertial frame of reference.
The control inputs for the vehicle are defined as u(t) = [v f ωr ]T . Furthermore, let the control input u(t) be constrained
to the set

U(t) =
{
u(t) : vmin ≤ v f ≤ vmax, ωmin ≤ ωr ≤ ωmax

}
(2)

Furthermore, the evolution of the path variable γ can be seen as an virtual control input, i.e, Ûγ(t) = uγ(t), constrained to
the set

Uγ(t) =
{
uγ(t) : uγ,min ≤ uγ ≤ uγ,max

}
(3)

The MPF problem can be stated as follows.

Problem 1 (Constrained Moving Path Following). Given a trajectory pI
t (t) with time derivative vI

t (t) and the desired
geometric path pT

d
(γ) with desired speed Ûγd , the Moving Path Following control problem is to design a control law for

u(t) that steers the vehicle along the desired moving path pI
d
(t, γ) = pI

t (t) + pT
d
(γ) while satisfying the input constraints

u(t) ∈ U. Specifically, we wish to drive the term ‖pI
r (t) − pI

d
(t, γ)‖ toward an arbitrarily small neighborhood of the

origin as t →∞. Additionally, a virtual control input uγ(t) ∈ Uγ(t) needs to be designed such that ‖uγ(t) − Ûγd ‖ → 0
as t →∞.

III. Lyapunov-based Nonlinear Control Law
In this section, a globally exponentially stabilizing nonlinear control law is developed to solve the unconstrained

MPF control problem. The existence of such a nonlinear control law is required to design a stabilizing nonlinear MPC
law and forms an important intermediate result.

A. Error Dynamics
In order to design a globally exponentially stabilizing nonlinear controller using Lyapunov-based arguments, define

an error variable e(t) =
(
RI
R(t)

) ′ (pI
r (t) − pI

d
(t, γ)

)
+ ε . The vector ε = [ε1 ε2]T is a constant vector that can be made

arbitrarily small. Taking the time derivative of the error variable e(t), we have

Ûe(t) =
(
ÛRI
R(t)

) ′ (
pI
r (t) − pI

d(t, γ)
)
+

(
RI
R(t)

) ′ (
ÛpI
r (t) − ÛpI

d(t, γ)
)

(4)

Notice that the desired position along the path pI
d
(t, γ) is expressed in the inertial frame which is not known. However,

it can be computed from the known information as

pI
d(t, γ) = pI

t (t) + pT
d (γ) (5)

Consequently, the time derivative of ÛpI
d
(t, γ) satisfies

ÛpI
d(t, γ) = vI

t (t) +
∂pT

d
(γ)

∂γ
( Ûγ) (6)

Using the time derivative of ÛpI
d
(t, γ) and the robot dynamics (1) in (4) results in

Ûe(t) =
(
RI
R(t)S(ωr )

) ′ (
pI
r (t) − pI

d(t, γ)
)
+

(
RI
R(t)

) ′ (
RI
R(t)vR

r (t) − vI
t (t) −

∂pT
d
(γ)

∂γ
( Ûγ)

)
= −S(ωr ) (e(t) + ε ) +

(
RI
R(t)

) ′ (
RI
R(t)vR

r (t) − vI
t (t) −

∂pT
d
(γ)

∂γ
( Ûγ)

)
= −S(ωr )e(t) + ∆u(t) −

(
RI
R(t)

) ′
vI
t (t) −

(
RI
R(t)

) ′ ∂pT
d
(γ)

∂γ
( Ûγ) (7)

where ∆ =

[
1 −ε2

0 ε1

]
. In order to have a direct control over the angular velocity of the robotic vehicle we assume

ε2 , 0.
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B. Control law
Using the error dynamics of (7), the following result solves the unconstrained MPF control problem.

Proposition 1 (Unconstrained Moving Path Following). Consider the robotic vehicle (1) in closed loop with the
feedback control law

u(t) = ∆−1

(
−Kpe(t) +

(
RI
R(t)

) ′
vI
t (t) +

(
RI
R(t)

) ′ ∂pT
d
(γ)

∂γ
Ûγ
)

(8)

where Kp is a known positive definite gain matrix and ε chosen such that the matrix ∆ in (7) is invertible. Then, the
origin e(t) = 0 of the closed loop system (7) with control law (8) is globally exponentially stable equilibrium point.

Proof. Consider the ISS Lyapunov function

V(e(t)) = 1
2

e(t)′e(t)

Taking the time derivative and using (7), (8), we have

ÛV(e(t)) = e(t)′Ûe(t)

= e(t)′
(
−S(ωr )e(t) + ∆u(t) −

(
RI
R(t)

) ′
vI
t (t) −

(
RI
R(t)

) ′ ∂pT
d
(γ)

∂γ
( Ûγ)

)
= −e(t)′S(ωr )e(t) − e(t)′Kpe(t)
≤ −λmin(Kp)‖e(t)‖2

Consequently, the equilibrium point e(t) = 0 of the system (7) with controller (8) is Globally Exponentially Stable.

Remark 1. Note that the error ‖e(t)‖ converges exponentially to zero as t →∞ implies that the moving path following
error ‖pI

r (t) − pI
d
(t, γ)‖ → ‖ε ‖ as t →∞. As a result, the robotic vehicle converges to an arbitrary small neighborhood

of the origin.

IV. Nonlinear Model Predictive Control Design

A. Background
Among the main approaches used in the literature to certify the NMPC controller, we refer [12] for regional

Lyapunov stability of nonlinear systems in the case of a quadratic stage cost and linear auxiliary control law valid around
the origin. The results are extended in [13] and (possibly global) convergence to the origin using NMPC has been
established through use of a nonlinear auxiliary control law. In this work, we use the recent result [15] to ascertain
global asymptotic stability of the NMPC. Consider a generic nonlinear model of the system that needs to be stabilized
using NMPC given as,

Ûx(t) = f (t, x(t), u(t)) (9)

where x(t) ∈ Rn denotes the state of the system, with x(t0) ∈ X0 ⊆ Rn the initial state at initial time t0 and the control
inputs u(t) ∈ Rm are constrained to the set U : R≥0 ⇒ R

m. The sampled-data Nonlinear Model Predictive Control
problem is to solve an open-loop Optimal Control Problem (OCP) over a finite time horizon T ∈ R>0 at every sampling
time instant T := {ti}i≥0, with ti+1 − ti < T , and ti+1 = ti + δ. The open-loop OCP is defined as follows,
Definition 1 (Open-loop OCP). Given a horizon length T ∈ R>0, let x̄([ti, ti +T]) and ū([ti, ti +T]) denote the predicted
state and input trajectories that satisfy the system dynamics with the initial condition x̄(ti) = z(ti). The open-loop MPC
consists of solving the following optimization problem for the optimal control signal ū∗([ti, ti + T]).

min
ū∗([ti,ti+T ])

∫ ti+T

ti

l(s, x̄(s), ū(s))ds + m(ti + T, x̄(ti + T)) (10)

subject to Û̄x(s) = f (s, x̄(s), ū(s))
x̄(ti) = z, x̄(ti + T) ∈ Xf

x̄(s) ∈ X, ū(s) ∈ U
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where the variable s ∈ [ti, ti + T] denotes the time variable used in the predictions, l(s, x̄(s), ū(s)) is the recurring stage
cost and m(ti + T, x̄(ti + T)) denotes the terminal cost. The set Xf ⊆ Rn denotes the terminal set.

At any time instant ti ∈ T, the state of the system x(ti) is measured and used as an input to solve the OCP (10). From
the computed optimal input trajectory ū∗([ti, ti + T]), only a part of the signal ū∗([ti, ti + δ]) is applied to the system for
a duration δ. At time ti+1, the open-loop OCP is solved again with the new measurements (inputs) z(ti+1) = x(ti+1) ,
thereby forming a feedback control loop. The time horizon, stage cost, terminal cost and the terminal set forms the
design parameters for the NMPC problem. As will be discussed in the following, the terminal cost and terminal set plays
a crucial role in design of stabilizing NMPC. At this point, we state the assumptions on the system and the sufficient
conditions that needs to be satisfied for the design of a stable, sampled-data NMPC.
Assumption 1. The function f (t, x, u) is locally Lipschitz with respect to x, piecewise continuous in t and u. Furthermore,
the function is bounded for bounded x in region of interest i.e, set {‖ f (t, x, u)‖ : t ≥ t0, x ∈ X, u ∈ U} is bounded for
any bounded x ∈ X ⊂ Rn and f (t, 0, 0) = 0.
Assumption 2. The state constraint set X(t) and the terminal set Xf ⊆ X(t) are closed, connected, and contain the
origin for all t ≥ t0. The input constraint set U(t) is such that 0 ∈ U(t) for all t ≥ t0.
Assumption 3. The running stage cost l(s, x̄, ū) is continuous, l(·, 0, 0) = 0 and there exists a class K∞∗ function
α : R≥0 → R≥0 such that l(s, x̄, ū) ≥ α(‖ x̄‖) for all (t, ū, x̄) ∈ R≥0 × U × X(t). Moreover, for any given pair
(x̄, ū) ∈ Rn × Rm the functions l(t, x̄, ū) and m(t, x̄) are uniformly bounded over time, with m(·) being positive
semidefinite in x.
Assumption 4. There exists an auxiliary control law kaux : R≥0 ×Rn → Rm such that the system (9) in closed-loop with
the auxiliary control input ūaux(t) = kaux(t, x̄aux), with initial time and states (t̂, ˆ̄x) ∈ R≥ti+T × Xf , the state and input
trajectories exist, are unique, and respect the system constraints x̄aux ∈ Xf , ūaux ∈ U(t) for all t ∈ R≥t̂ . Here, (x̄aux, ūaux)
denotes the pair of state and input trajectories obtained by application of the auxiliary control law kaux(·). Furthermore,
for all x̄aux ∈ Xf and t̂ ≥ t0 the terminal cost satisfies,

m(t̂ + δ, x̄aux(t̂ + δ)) − m(t̂, ˆ̄x) ≤ −
∫ t̂+δ

t̂

l(s, x̄aux, ūaux)ds (11)

Assumption 5. The time horizon T is chosen such that, the terminal set Xf is reachable from any initial state
x(t0) ∈ X0 ⊂ Rn in time T . In other words, we assume that the OCP is feasible given the initial time and state pair
(t0, x(t0)) such that the x(t0 + T) ∈ Xf .
Assumption 6. There exists a piecewise continuous control law ū([t̂, t̂ + T]) for all (t̂, x̂) ∈ R≥t0 × Rn, such that the
constrained system (9), in closed-loop with ū([t̂, t̂ +T]) has feasible state and input trajectories and satisfies the inequality∫ t̂+T

t̂

l(s, x̄(s), ū(s))ds + m(t̂ + T, x̄(t̂ + T)) ≤ αc(‖ x̂‖) (12)

for a class K∞ function αc : R≥0 → R≥0.
We now state the result of stabilizing MPC from [15]

Theorem 1. Consider a system (9) and the design parameters of an MPC problem T, l(·),m(·),Xf that satisfies the
assumptions 1 - 6. Then, for a sufficiently small inter-sampling time δ, the closed loop system resulting from application
of the MPC strategy is asymptotically stable, i.e., ‖x(t)‖ → 0 as t →∞.

Proof. Refer Theorem 1 of [15] for the proof.

B. Main Result
Following the guidelines presented in the previous subsection, the solution of the constrained MPF problem using

NMPC is presented in the following proposition.
∗A continuous function α : [0, a) → [0,∞) is said to belong to class K if it is strictly increasing and α(0) = 0. Additionally it is said to belong

to class K∞ if a = ∞ and α(r) → ∞ as r →∞.
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Proposition 2 (Constrained Moving Path Following). Given the error dynamics for the MPF system (7), a finite horizon
length T , a tuple of input parameters z(ti) =

(
pI
R(ti), RI

R(ti), γ(ti), pI
t (ti), vI

t (ti)
)
, consider the open-loop OCP

min
ū([ti,ti+T ])

∫ ti+T

ti

(
‖ē(s)‖2Q + ‖ū(s) − kaux(s, γ̄, ē, RI

R, p
T
d, v

I
t )‖2R + ‖ūγ(s) − Ûγd ‖2

)
ds + m(ē(ti + T)) (13)

subject to Û̄pI
r (s) = R̄I

R(s)v̄R
r (s)

Û̄RI
R(s) = R̄I

R(s)S(ω̄r (s))
Û̄γ(s) = ūγ(s)

ē(s) =
(
R̄I
R(s)

) ′ (
p̄I
r (s) − p̄I

d(s, γ̄)
)
+ ε

ū(s) ∈ U(s), ūγ(s) ∈ Uγ, ē(ti + T) ∈ E f

z(ti) =
(
pI
R(ti), RI

R(ti), γ(ti), pI
t (ti), vI

t (ti)
)

for all s ∈ [ti, ti + T] . The sampled data NMPC obtained by solving the OCP (13) at time t ∈ T and application of the
computed optimal control input umpc(t) = ū∗([ti, ti + δ)) for all t ∈ [ti, ti + δ) to the system (1) with the terminal cost ,

m(ti + T, ē(ti + T)) = λmax(Q)
3λmin(Kp)

‖ē(ti + T)‖3 (14)

and terminal constraint set E f = R
2, results in a stabilizing NMPC solution to the constrained MPF problem.

Proof. The methodology adopted to prove the proposition is to motivate the choice of design parameters and show that
the proposed design parameters satisfy the sufficient conditions for a stabilizing NMPC outlined in Theorem 1. For a
suitable change of input, it is easy to see that the dynamical model (7) satisfies Assumption 1 considered with x = e.
Stage Cost – The most common stage cost function for tracking applications such the MPF problem is a quadratic stage
cost. Consider the change of input coordinate v = [ū′ − kaux(s, γ̄, ē, RI

R, p
T
d
, vI

t )′, ūγ − Ûγd]′. Then, the cost function
l(s, ē, v) = ‖ē‖2Q + ‖ū− kaux(s, γ̄, ē, RI

R, p
T
d
, vI

t )‖2R + ‖ūγ − Ûγd ‖2, for any Q � 0 and R � 0, trivially satisfies the conditions
of the Assumption 3 with vaux = [kaux(s, γ̄, ē, RI

R, p
T
d
, vI

t )′, Ûγd]′.
Terminal Cost – In order to design an appropriate terminal cost, consider the error dynamics (7) with the Lyapunov-like
function W(e) := ‖e‖ presented in [16], and a modified version of the control input (8) defined as

u(t) =

∆−1

(
−Kp

e(t)
‖e(t) ‖ +

(
RI
R(t)

) ′ vI
t (t) +

(
RI
R(t)

) ′ ∂pT
d
(γ)

∂γ Ûγd
)
, ‖e(t)‖ , 0

∆−1
( (

RI
R(t)

) ′ vI
t (t) +

(
RI
R(t)

) ′ ∂pT
d
(γ)

∂γ Ûγd
)
, ‖e(t)‖ = 0

(15)

The control input (15) in closed loop with (7) results in

Ûe(t) =
{
−S(ωr )e(t) − Kp

e(t)
‖e(t) ‖ , ‖e(t)‖ , 0

0, ‖e(t)‖ = 0
. (16)

The time derivative of the Lyapunov-like function W(e(t)) takes the form

ÛW =
{

e(t)′ Ûe
‖e(t) ‖ =

−e(t)′Kpe(t)
‖e(t) ‖2 ≤ −λmin(Kp), ‖e(t)‖ , 0

0, ‖e(t)‖ = 0
(17)

Consequently, the solution of the error variable e(t) converges to the origin in finite time as follows

‖e(τ)‖ =
{
‖e(t)‖ − λmin(Kp)(τ − t), τ ∈ [t, tO]
0, τ > tO

(18)

with tO := t + ‖e(t) ‖
λmin(Kp ) . Let (eaux, uaux) denote the state and input trajectories obtained by application of the control law

(15), with initial time and initial state denoted by (t̂, ê) ∈ R≥ti+T × E f for all τ ∈ [ti + T,∞). Then, the running stage
cost can be upper bounded as

l(τ, eaux, uaux) ≤ l̂(τ; t̂, ê) =
{
λmax(Q)

(
‖ê‖ − λmin(Kp)(τ − t̂)

)2
, τ ≤ t̂ + ‖ê‖

λmin(Kp )
0, τ > t̂ + ‖ê‖

λmin(Kp )
(19)
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where l̂(τ; t̂, ê) satisfies

l̂(τ; t̂ + δ, eaux(t̂ + δ)) ≤ l̂(τ; t̂, ê)
lim
τ→∞

l̂(τ; t̂, ê) = 0

for all δ ≥ 0. Invoking the result of Lemma 24 from [17], the terminal cost function

m(t̂, ê) =
∫ ∞

t̂

l̂(τ; t̂, ê)dτ (20)

= −λmax(Q)
(
‖ê‖ − λmin(Kp)τ

)3

3λmin(Kp)

�����
‖ê‖

λmin(Kp )

0

=
λmax(Q)

3λmin(Kp)
‖ê‖3

satisfies the cost decrease condition (11) of Assumption 4.
Terminal Constraint Set – In the following, an input constraint set is selected such that the auxiliary control law is always
feasible and the terminal set can be omitted or equivalently, E f = R

2. From (15), we have

‖[uaux(τ)]1‖ ≤ ‖[∆−1]1‖η + ‖[∆−1Kp]1‖ =: vmax (21)

‖[uaux(τ)]2‖ ≤ ‖[∆−1]2‖η + ‖[∆−1Kp]2‖ =: ωmax (22)

where

η := ‖vI
t ‖ + sup

γ

∂pT
d
(γ)

∂γ

 ‖ Ûγd ‖ (23)

choosing vmin = −vmax and ωmin = −ωmax, leads to an input constraint setU that satisfies Assumption 2 along with the
terminal set E f . The chosen stage cost, terminal cost, terminal set and the input constraint set satisfies Assumptions 1 -
5, leading to a stabilizing NMPC scheme for the MPF problem.
Controllability – The controllability assumption 6 is satisfied by noticing that∫ t̂+T

t̂

l(s, x̄(s), ū(s))ds + m(t̂ + T, x̄(t̂ + T))

=

∫ t̂+T

t̂

l(s, x̄(s), ū(s))ds +
∫ ∞

t̂+T

l̂(s; t̂ + T, x̄(t̂ + T))ds

≤
∫ t̂+T

t̂

l̂(s; t̂, x̂)ds +
∫ ∞

t̂+T

l̂(s; t̂ + T, x̄(t̂ + T))ds

≤
∫ ∞

t̂

l̂(s; t̂, x̂)ds =
λmax(Q)

3λmin(Kp)
‖ê‖3.

V. Simulation Results
The efficacy of the proposed NMPC law is demonstrated in simulations using Matlab based simulation software

VirtualArena [18]. A scenario is considered where the robotic vehicle is required to orbit around a moving target. It is
assumed that the target trajectory is known a priori. Such a scenario can be anticipated in situations such as single
beacon navigation and tracking problem where the robotic vehicle has to execute maneuvers that makes the target
states observable [9], although in such situations the target trajectory is not known a priori. Nevertheless, the presented
control method in its state feedback form is an important step towards the development of an output feedback control
solution where the target position and velocity are estimated on-line through appropriate selection of the estimation
strategy. In order to demonstrate the flexibility of the MPF framework, another scenario is considered wherein the
robotic vehicle is tasked to follow a moving lemniscate path. Such scenarios arise in applications such as single/multiple
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Fig. 2 Position of the robotic vehicle, target and the reference moving path for the two scenarios
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Fig. 3 Error variable and the computed control inputs for the circumnavigation scenario

target tracking by a UAV [3]. The position of the target pI
t (t) and the desired path pT

d
(γ) used in the simulations for the

two scenarios presented above are shown in Table 1. The sampled-data NMPC was simulated with sampling period of
0.1 seconds for simulation time of 300 and 50 seconds for circular and lemniscate scenarios respectively. The horizon
length was chosen as 0.3 seconds. The inputs were constrained as vmax = 2 [m/s] and ωmax = π [rad/s]. The gain matrix
in the auxiliary control law was set to Kp = 0.1I2×2. The weighing matrices Q and R in the cost function was set to
Q = 10I2×2 and R = I2×2. The asymptotic tracking error term ε = [0.2, 0]′ was used to compute the error variable e(t).
For the given simulation parameters, Figure 2a and 2b shows the position of the reference path and the path followed
by the robotic vehicle for circular and lemniscate scenario respectively. Clearly the robot is able to track the moving
target while following the desired geometric path. Additionally, the proposed approach is flexible to different path
specifications parameterized by a path variable γ. The error variables and computed NMPC control inputs are shown
in Figure 3a and 3b respectively. The NMPC control law is able to asymptotically drive the error to zero and hence
‖pI

r − pI
d
(t, γ)‖ → ‖ε ‖ as explained in Remark 1. Also, the control inputs satisfy the imposed constraints.
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Table 1 Target position and desired path

Circular Path Lemniscate Path
Target Position pI

t (t) (0.1t, 2 sin(0.05t))′ (4, 0.1t)′

Desired Path pT
d
(γ) (2 cos(0.5γ), 2 sin(0.5γ))′

(
cos(0.5γ)

1+sin(0.5γ)2 ,
sin(0.5γ) cos(0.5γ)

1+sin(0.5γ)2

) ′
VI. Conclusion

In this paper, a MPF motion control problem was considered for a constrained under-actuated vehicle. A continuous
time sampled-data NMPC control law was designed and its stability properties was outlined through appropriate design
of the auxiliary control law, stage cost function, and terminal cost function. Furthermore, it was shown that the terminal
constraint set can be excluded by choosing an input constraint set such that the auxiliary control is always feasible. The
results were illustrated through simulations with two scenarios: moving circular path and lemniscate path. Although the
results were presented for 2D case, the results for 3D case are straightforward. Future work would involve relaxation of
the assumption that the target trajectory is known a priori and instead could be estimated, resulting in a output feedback
controller. It is also interesting to consider the effect of disturbances such as wind gusts for aerial vehicles, and water
currents for the underwater case, on the performance of the proposed controller.

References
[1] Aguiar, A. P., and Hespanha, J. P., “Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With

Parametric Modeling Uncertainty,” IEEE Transactions on Automatic Control, Vol. 52, No. 8, 2007, pp. 1362–1379. doi:
10.1109/TAC.2007.902731.

[2] Skjetne, R., Fossen, T. I., and Kokotović, P. V., “Robust output maneuvering for a class of nonlinear systems,” Automatica,
Vol. 40, No. 3, 2004, pp. 373 – 383. doi:https://doi.org/10.1016/j.automatica.2003.10.010, URL http://www.sciencedirect.
com/science/article/pii/S0005109803003467.

[3] Oliveira, T., Aguiar, A. P., and Encarnação, P., “Moving Path Following for Unmanned Aerial Vehicles With Applications
to Single and Multiple Target Tracking Problems,” IEEE Transactions on Robotics, Vol. 32, No. 5, 2016, pp. 1062–1078.
doi:10.1109/TRO.2016.2593044.

[4] Oliveira, T., and Encarnação, P., “Ground Target Tracking Control System for Unmanned Aerial Vehicles,” Journal of Intelligent
& Robotic Systems, Vol. 69, No. 1, 2013, pp. 373–387. doi:10.1007/s10846-012-9719-0, URL https://doi.org/10.1007/
s10846-012-9719-0.

[5] Oliveira, T., Aguiar, A. P., and Encarnação, P., “Three dimensional moving path following for fixed-wing unmanned
aerial vehicles,” 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 2710–2716. doi:
10.1109/ICRA.2017.7989315.

[6] Zhang, M., and Liu, H. H. T., “Game-Theoretical Persistent Tracking of a Moving Target Using a Unicycle-Type Mobile
Vehicle,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 11, 2014, pp. 6222–6233. doi:10.1109/TIE.2014.2317133.

[7] Zolich, A., Johansen, T. A., Alfredsen, J. A., Kuttenkeuler, J., and Erstorp, E., “A Formation of Unmanned Vehicles for Tracking
of an Acoustic Fish-Tag,” Proceedings of the IEEE/MTS OCEANS, 2017.

[8] Rucco, A., Sujit, P. B., Pedro Aguiar, A., and Sousa, J., “Optimal UAV Rendezvous on a UGV,” AIAA Guidance, Navigation,
and Control Conference, 2016.

[9] Alessandretti, A., Aguiar, A. P., and Jones, C. N., Optimization Based Control for Target Estimation and Tracking via Highly
Observable Trajectories, Springer International Publishing, Cham, 2015, pp. 495–504. doi:10.1007/978-3-319-10380-8_47,
URL https://doi.org/10.1007/978-3-319-10380-8_47.

[10] Jain, R. P., Alessandretti, A., Aguiar, A. P., and de Sousa, J. B., “A Nonlinear Model Predictive Control for an AUV to Track
and Estimate a Moving Target Using Range Measurements,” ROBOT 2017 Iberian Robotics conference, Springer, 2017, pp.
161–170.

[11] Aguiar, A. P., “Single and multiple motion control of autonomous robotic vehicles,” 2017 11th International Workshop on
Robot Motion and Control (RoMoCo), 2017, pp. 172–184. doi:10.1109/RoMoCo.2017.8003910.

9

http://www.sciencedirect.com/science/article/pii/S0005109803003467
http://www.sciencedirect.com/science/article/pii/S0005109803003467
https://doi.org/10.1007/s10846-012-9719-0
https://doi.org/10.1007/s10846-012-9719-0
https://doi.org/10.1007/978-3-319-10380-8_47


[12] Chen, H., and Allgöwer, F., “A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme with Guaranteed Stability,”
Automatica, Vol. 34, No. 10, 1998, pp. 1205–1217.

[13] Fontes, F. A., “A general framework to design stabilizing nonlinear model predictive controllers,” Systems & Control Letters,
Vol. 42, No. 2, 2001, pp. 127 – 143.

[14] Alessandretti, A., Aguiar, A. P., and Jones, C. N., “Trajectory-tracking and path-following controllers for constrained
underactuated vehicles using Model Predictive Control,” 2013 European Control Conference (ECC), 2013, pp. 1371–1376.

[15] Alessandretti, A., Aguiar, A. P., and Jones, C. N., “An Input-to-State-Stability approach to Economic Optimization in Model
Predictive Control,” IEEE Transactions on Automatic Control, Vol. PP, No. 99, 2017, pp. 1–1. doi:10.1109/TAC.2017.2700388.

[16] Alessandretti, A., and Aguiar, A. P., “A distributed Model Predictive Control scheme for coordinated output regulation,” Proc.
of the 20th IFAC World World Congress, 2017.

[17] Alessandretti, A., Aguiar, A. P., and Jones, C. N., “On convergence and performance certification of a continuous-time economic
model predictive control scheme with time-varying performance index,” Automatica, Vol. 68, 2016, pp. 305–313.

[18] Alessandretti, A., Aguiar, A. P., and Jones, C. N., “VirtualArena : An Object-Oriented MATLAB Toolkit for Control System
Design and Simulation,” Proc. of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, USA,
2017.

10


	Introduction
	Problem Definition
	Lyapunov-based Nonlinear Control Law
	Error Dynamics
	Control law

	Nonlinear Model Predictive Control Design
	Background
	Main Result

	Simulation Results
	Conclusion

