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Abstract. In this paper, we propose a Nonlinear Model Predictive Con-
trol (NMPC) approach that is employed by an Autonomous Underwater
Vehicle (AUV) to track and estimate a moving target using range mea-
surements. Due to the nonlinearities in the observation model associated
with range-only measurements, there exist state and input trajectories of
the AUV that makes the position of the target unobservable. To address
this problem, a standard stabilizing NMPC based approach augmented
with an economic cost function is utilized to steer the system through
highly observable trajectories in order to guarantee a good estimate of
the position of the target. The efficacy of the proposed solution is demon-
strated through simulations.
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1 Introduction

Autonomous Underwater Vehicles (AUV) are being used extensively for marine
applications such as ocean sampling [8, 9], seabed mapping [12], ecological stud-
ies [15] to name a few. In such applications, the AUVs with various sensors are
deployed for large scale data collection [14] and are often faced with tasks which
require tracking of a moving target. One possible application is the case where
the AUV needs to return to a possibly mobile base station for recharging, main-
tenance and so forth, usually performed with manual assistance. Autonomous
docking is therefore a problem of interest where the AUVs can dock automati-
cally for routine maintenance and thereby prolong the mission duration. In order
to perform such a task the AUV needs to continuously estimate and track the
moving target so that it can approach to its vicinity after which a docking pro-
cess could be initiated. Such a capability is even more desired when operating
off-shore. Additionally, limited on-board sensor capabilities and unavailability of
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reliable communication medium when operating in a marine environment limits
the performance abilities of such systems.

In this paper, we consider the problem where an AUV needs to track and
estimate a moving or stationary ASV, referred to as ‘target’, autonomously. Fur-
thermore, we consider the scenario where the only information available to the
AUV is the range (geometric distance) to the target, that is obtained by mea-
suring the time-of-flight of an acoustic pulse. The resulting problem is a target
estimation and tracking problem using range-only measurements. The position
estimation of the target using range-only measurements is a highly nonlinear
estimation problem. Additionally, it is possible to show that, there exists un-
desirable control and state trajectories which result in an unobservable system.
Therefore, it is desirable to perform some ‘observability based maneuvers’, which
steers the system through highly observable trajectories in order to guarantee a
good estimate of the position of the target.

The works in [7, 13] propose solutions based on suitable maneuvers designed
to keep the state of the target vehicle observable. Although some of the re-
sults are promising, within the proposed framework, it is difficult to asses the
quality of the overall estimate obtained during the mission. In this paper, the
dual yet conflicting objective of tracking a moving target, while steering the
system through highly observable trajectories, is posed as a continuous time
sampled-data Nonlinear Model Predictive Control (NMPC) problem with eco-
nomic optimization [5]. We borrow from [4, 3], where the position of the target
is estimated in 2D using bearing measurements to the target and extend it to
the 3D case with range-only measurements. Specifically, the performance index
of the proposed NMPC controller is composed of a stabilizing cost for target
tracking and an observability index designed to steer the AUV through highly
observable trajectories. We demonstrate the efficacy of the proposed method
through simulations.

The paper is organized as follows. Section 2 describes the problem formula-
tion and presents the model used for simulation of the target ASV and the AUV.
Section 3 discusses the NMPC based target tracking and estimation method pro-
posed in this paper. The measures of observability are presented and a NMPC
problem is formulated which steers the system through highly observable tra-
jectories resulting in good quality estimates. Simulation results are discussed in
Section 4 followed by conclusions in Section 5.

2 Problem Formulation

Consider right handed frame of references, namely, the Inertial frame {I} which is
a fixed reference frame, a reference frame {T} attached to the body of the target
(ASV) and a reference frame {F} attached to the AUV. Let pt = [xt, yt]

T ∈ R2

and pf = [xf , yf , zf ]T ∈ R3 denote the position of the target and the AUV
respectively, expressed in frame {I}. The position of the target along the z-
direction is considered to be the reference depth and it is assumed that zt = 0
remains constant throughout for the sake of simplicity. The motion of the target
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ASV is captured by the unicycle model,

ṗt = RT (ψt)vt (1)

ψ̇t = ωt

where vt = [vt, 0]T is the linear velocity of the target in frame {T} (vt is
the longitudinal velocity), ωt is the angular velocity of the target, and RT (ψt) ∈
SO(2) is the rotation matrix parameterized using the heading angle of the target
ψt. Similarly, the AUV is modeled as a 6DOF rigid body kinematic model given
as [

ṗf

Θ̇f

]
=

[
RF (φf , θf , ψf ) 0

0 W (φf , θf ))

] [
vf

ωf

]
(2)

where the attitude of the AUV is given by the rotation matrix RF (φf , θf , ψf )
parameterized using ZYX - Euler angles Θ = [φf , θf , ψf ]T and

W (φf , θf ) =

1 sinφf tan θf cosφf tan θf
0 cosφf − sinφf
0 sinφf/ cos θf cosφf/ cos θf

 (3)

relates the body fixed angular velocities ωf to the rate of change of Euler angles.
We consider that the target vehicle moves along an unknown path pt(t) for all
t ∈ [0,∞). Furthermore, the only available information regarding the target is
the range measurement from the AUV to the target r ∈ R>0, defined as

r = ‖qt − pf‖ (4)

where qt = [pT
t , zt]

T is the position of the target in 3D with zt = 0. It is assumed
that the AUV is equipped with a navigation system that provides estimates of its
attitude and position. The problem of target estimation and tracking is stated
as follows

Problem 1 (Target Estimation and Tracking) Given the dynamical model
of the target (1), the dynamical model of the AUV (2), and the relative range
measurement model (4)

1. Estimate the state of the target p̂t.

2. Design a predictive control law for the AUV control inputs uf (t) = [vf , ω
T
f ]T

which steers the AUV near the vicinity of the target while ensuring that the
resulting state and input trajectories are highly observable. ut

Remark 1. In order to obtain high quality estimates of the target position using
range-only measurements, it is necessary to drive the system through highly
observable state and input trajectories.
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3 Target Estimation and Tracking Controller

In this section, the various steps involved in the target estimation and tracking
control design are discussed and the design choices are motivated. The method-
ology adopted is to design the predictive control law in state feedback form, as-
suming that the states of the AUV and the target are known. Next, the states of
the overall system are estimated using an observer such as an Extended Kalman
Filter with the available measurements. The estimation process assumes that the
underlying system is observable. In order to avoid unobservable trajectories, we
incorporate a measure of unobservability in the cost function of the predictive
controller. This allows to obtain a good quality estimate of the target states.

3.1 Target-Follower System Description

As described earlier, the only information of the target available to the AUV is
the range of the target from the AUV. Since it is assumed that the dynamics of
the target is unknown from the perspective of the AUV, we propose to model
the target as a single integrator model with inputs vt = [vtx , vty ]T .

ṗt = vt (5)

Additionally, we also assume that the control inputs applied to the target are
unknown and hence these inputs need to be estimated. One possible strategy
is to consider that the target inputs (linear velocities) are slowly varying. This
allows us to assume that the target linear velocities are constant over a finite
prediction horizon, that is,

v̇t = 0 (6)

The dynamics of the AUV (2) is used in the process of control design and esti-
mation.

Motion Model: Therefore, the system model used for prediction and estima-
tion can be written as

ṗf = RF (φf , θf , ψf )vf (7)

Θ̇f = W (φf , θf ))ωf

ṗt = vt

v̇t = 0

Measurement Model: We assume that the attitude and the position of the
AUV is known through the on-board navigation system, i.e, pf and Θf mea-
surements are always available. The measurement model is given as follows:

pf = pf (8)

Θf = Θf

r =
√

(qt − pf )′(qt − pf )
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Since all the states of the AUV are considered to be measured, the observability
of the system is equivalent to observability of target states (pt,vt) from the range
measurements r. Consequently, the measure of observability, discussed later, is
derived from the measurement model related to the range measurement only.

3.2 Predictive Controller

In this section, we propose a continuous time sampled-data NMPC law to drive
the AUV near the vicinity of the target, while actively estimating the position
of the target. We use the trajectory tracking NMPC presented in [2] and apply
it to the target tracking problem. The controller uses the estimates of the states
as input and solves an open-loop optimal control problem over a finite horizon
of T seconds. A part of the optimal control input is applied to the system and
the optimization step is repeated every sampling time of δ seconds with latest
received estimates of the states as initial condition, resulting in a feedback con-
troller. We define the optimal control problem next, followed by discussion of the
design considerations. For a given signal x(.), x([t1, t2]) denotes the evolution of
the signal over the time interval [t1, t2]. We use the notation t, to denote the evo-
lution of time during simulations and τ to denote the time in prediction phase
of the NMPC. Similarly the internal variable associated with the controller is
denoted by a bar symbol over the variable, for example, x̄(t).

The target tracking NMPC controller is defined as follows.

Definition 1 (Target tracking NMPC). Given the initial condition vector
z(t), a horizon length T ∈ R>0, the target-follower system dynamics (7), the
target tracking NMPC at time t consists of finding the optimal control signal
ū∗f ([0, T ]) ∈ PC(0, T ), where PC(0, T ) denotes space of piecewise continuous
signals, by solving the following open-loop optimization problem,

min
ūf ([0,T ])

∫ T

0

‖e(τ)‖2Q dτ + a2‖ē(T )‖2 (9)

subject to ˙̄pf (τ) = R̄F (τ)v̄f (τ) ∀τ = [0, T ]

˙̄Θf (τ) = W̄ (τ)ω̄f (τ) ∀τ = [0, T ]

˙̄pt(τ) = v̄t(τ) ∀τ = [0, T ]

˙̄vt(τ) = 0 ∀τ = [0, T ]

ē(τ) = R̄′F (τ)(p̄f (τ)− q̄t(τ)) + ε ∀τ = [0, T ]

ūf (τ) ∈ U , ē(T ) ∈ Ef ∀τ = [0, T ](
p̄f (0), p̄t(0), v̄t(0), Θ̄f (0)

)
= z(t)

where the initial condition vector is initialized as z(t) =
(
p̂f (t), p̂t(t), v̂t(t), Θ̂f (t)

)
,

U defines the input constraint set, and Ef is the terminal constraint set. ut

In a receding horizon strategy, the control input is computed at time instants
tk with sampling time of δ seconds. The input applied to the system is given as
umpc,f(t) = ū∗f (t− tk; z(tk)) for all t ∈ [tk, tk+1).



6 R. Praveen Jain et al.

Remark 2. The terminal cost function a2‖ē(T )‖2 and the terminal constraint
set Ef are necessary for design of stabilizing NMPC [10], assuming that the
optimization problem (9) is feasible at initial time t = 0. For detailed discussion
on design of these terms see [2]. Roughly speaking, the design of terminal set
and the terminal cost relates to existence of a nonlinear control law valid over
the terminal set Ef ⊆ R3.

Remark 3. The tracking error variable e(t) = R′F (pf − qt) + ε is defined in [1].
It must be noted that if ε = 0, we do not have direct control over the attitude
of the AUV. Hence, it is necessary to have the condition ε 6= 0 satisfied for
existence of nonlinear auxiliary control law which is a necessary requirement for
design of stabilizing NMPC.

3.3 Observability Index

The NMPC law of previous section assumes that the states (or its estimates) of
the system are available. As mentioned previously, the estimation of the states
of the target using range-only measurements is a highly nonlinear estimation
problem with existence of state and control trajectories which results in an un-
observable system. In order to mitigate this problem we follow [4], and modify
the MPC optimization problem of the previous section. Specifically, we modify
the stage cost of the optimization problem to include an index of observability
lo as

min
ūf ([0,T ])

∫ T

0

(
‖e(τ)‖2Q + lo(q̄t, p̄f , v̄t, ˙̄pf )

)
dτ + a2‖ē(T )‖2 (10)

with the objective of avoiding weakly observable/non observable closed loop
trajectories resulting in an effective target estimation and tracking controller.

In this section we propose an index of observability. Consider the observability
matrix of the target-follower system (7), associated with the measured output r,

O =
∂

∂x

[
r′, ṙ′, r̈′, · · · , r{l}

′
]′

(11)

where r{l} denotes the lth derivative of the output r with respect to time t.
From the properties of the observability matrix, given l ∈ N>0 the state of the
target system (pt,vt) is locally observable at a given state and input of the
target-follower system (7), if the matrix O, is full rank. For general nonlinear
systems, the number of derivatives l to be considered is not known a priori. An
intuitive procedure to select l consists in increasing it until the observability
matrix becomes full rank for some values of the state and input vectors. Then,
driving the system through those values is enough to guarantee observability.

Let σmin(A) and σmax(A) denote the minimum and maximum singular value
of a generic matrix A. To obtain a measure of the degree of observability, one
possibility is to use the index 1/σmin(O) that increases as O gets close to singu-
larity and becomes infinity when O loses rank. Another index of interest is the
condition number of O, i.e., κ(O) := σmax(O)/σmin(O), which broadly speaking,
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provides a measure of the difference of the “quality” of observability of the state
components, where κ(O) = 1 if all the state components have the same “qual-
ity” of observability. Prompted by these observations, we select the following
observability index:

lo(q̄t, p̄f , v̄t, ˙̄pf ) = k arctan

(
1

k

(
α1

σmin(O)
+ α2(κ(O)− 1)2

))
(12)

for some positive constants α1 > 0 and α2 > 0, where the positive constant
k > 0 defines the width of the region where the nonlinearity arctan, is used as
smooth saturation-like function, behaves almost linearly. The proposed perfor-
mance index is saturated in order to guarantee that the system is not driven to
unstable behaviors [5]. Note that the observability matrix is not the only method
to define the index of observability and other mathematical tools, e.g., the deter-
minant or the trace of the Fisher Information Matrix (FIM), can be exploited in
a similar fashion. Assuming that the resulting NMPC steers the target-follower
system, through observable state and input trajectories, an Extended Kalman
Filter (EKF) is used to estimate the states.

4 Simulation results

The target estimation and tracking approach presented in the previous section
is validated through simulations using the VirtualArena Matlab toolbox [6].
The target ASV follows a trajectory specified as ptd = (sin(0.1t), t)

′
and ṗtd =

(0.1 cos(0.1t), 1)
′
which is not known to the AUV a priori. The only measurement

AUV has access to is the range measurement r = ‖qt − pf‖. Simulation was
conducted for 30 seconds with a sampling period of 0.1 seconds. The parameters
associated with the NMPC are Q = I, T = 0.3 seconds, and ε = [−1, 0,−1]

′
. It

is assumed that the initial states of the AUV and the target are known a priori
and were chosen as pf = [3, 3, 5]

′
meters, Θf = [0, 0, 0]

′
radians, qt = [2, 1, 0]

′

meters. Same initial conditions were provided to both the NMPC and the EKF
estimator in order to prove the concept and prevent the divergence of EKF.
The assumption that the initial states of the target are known is realistic as the
AUV could be provided with the necessary information before the start of the
mission. The AUV could then estimate the target’s position continuously during
the mission.

Figure 1 shows the simulation results of NMPC for target tracking and es-
timation of a moving target. From Figure 1a, it can be seen that the AUV
approaches the target while executing maneuvers that enhance the observability
of the system. The AUV stays within the vicinity of the target as is evident from
the Figure 1b and 1c. The size of the vicinity around the target is defined by
the size of ε used in the NMPC formulation (9). Ideally, the size of the vicinity
around the target could be made arbitrarily small, however we choose a larger
region so as to drive the AUV ‘near’ the target. Once near the target, AUV could
initiate a docking maneuver (not discussed in this paper).
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Fig. 1: Performance of the Nonlinear Model Predictive controller for target esti-
mation and tracking

Figure 1c shows the path taken by the AUV and the path followed by the
target. Estimated position of the target is also shown and it can be seen that
the EKF along with the observability based cost function in NMPC, allows
one to obtain good quality estimates of the target. Figure 1d shows the plot of
achieved linear velocity of the target and the velocities estimated by the EKF on
the AUV. Clearly, using range-only measurements, AUV is able to successfully
reconstruct the target position and velocity. Although, the simulations point
to the successful reconstruction of the target states, it must be noted that in
general, it is not possible to guarantee global convergence of EKF, and thus,
the results are only valid locally for small errors in initial conditions. Stability
properties of NMPC with economic optimization under state feedback has been
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proven in [4, 5]. Despite the latter result provides ISS guarantees only for the
case of state feedback, the simulation results presented in this paper serves as
a proof-of-concept for target estimation and tracking problems using range-only
measurements where the state is estimated using an EKF.

5 Conclusions

In this paper, a NMPC approach to target estimation and tracking problem was
considered. The problem was addressed using range-only measurements. In order
to mitigate the observability based issues with the target estimation using range-
measurements, an economic cost term was included in the standard stabilizing
cost function which serves to satisfy the dual objective of target tracking and
performing maneuvers which steers the system through highly observable trajec-
tories. It was shown under certain conditions that, the EKF is able to accurately
estimate the position and velocity of the target. However, no formal guaran-
tees were provided regarding the convergence of the filter or the stability of the
NMPC with an estimator in the feedback loop. This is still an open research
problem and developing methods which guarantee stability and convergence of
NMPC based output-feedback control could be investigated. The simulation re-
sults serve as the proof of concept and several further extensions to the current
work could be made. As mentioned earlier, observability matrix is not the only
measure of observability and other means such as the Fisher Information Matrix
could be exploited.

In this paper, external disturbances such as ocean currents, noise sources on
the actuators or the sensors were not considered. The logical extension of this
work would be to consider a non-ideal scenario with these external influences.
Furthermore, we have considered that the range measurements are obtained con-
tinuously which is usually not true in practice. It might therefore be interesting
to consider the scenario where the measurements are discrete and available inter-
mittently. NMPC being an computationally expensive operation, state-of-the-art
fast solvers such as ACADO [11] could be used for experimental validation.
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