
Self-Triggered Cooperative Path Following Control of Fixed Wing
Unmanned Aerial Vehicles

R. Praveen Jain, A. Pedro Aguiar, João Sousa
Department of Electrical and Computer Engineering
Faculty of Engineering, University of Porto, Portugal
{praveenjain, pedro.aguiar, jtasso}@fe.up.pt

Abstract— Formation control of multi-robot system may
involve extensive inter-robot information exchange. This paper
proposes a methodology to reduce the frequency of information
exchange in a formation control problem through the use of
a self-triggered control strategy for cooperative path following
(CPF) problems. In particular, a decentralized, self-triggered
CPF controller is developed for fixed-wing Unmanned Aerial
Vehicles, where the vehicles are tasked to follow desired
geometric paths and keeping a desired formation pattern. Using
the Input-to-State Stability framework, we provide guarantees
of stability and convergence in the presence of event-based
communication. Simulation results are provided to illustrate
the efficacy of the developed strategy. It is shown that the
self-triggered approach results in significant reduction of in-
formation exchange when compared to the conventional time-
triggered (periodic) implementation.

I. INTRODUCTION

Multi-Unmanned Aerial Vehicle (UAV) systems find many
interesting and challenging applications ranging from civilian
to military applications. In particular, formation control is a
cooperative control problem of major importance, owing to
its applicability in remote sensing, coastal monitoring[1], pla-
tooning and cooperative transport [2]. Furthermore, forma-
tion control problem of multi-UAV systems is challenging,
especially when the underlying system is an under-actuated,
nonlinear system such as a fixed wing UAV. One possible
strategy to solve the formation control problem is to employ
a cascaded, two layered control structure. The lower layer
is responsible for the motion control of the individual aerial
vehicle, called the Path Following (PF) controller [3]. The
higher layer is responsible for cooperation among the UAVs
called the Cooperative controller. This paper adopts the same
strategy, termed Cooperative Path Following (CPF) control
described in [4] but applied to UAVs.

Interesting applications where the CPF control strategy
for UAVs can be used are scenarios of coastal monitoring
with particular emphasis in situations where the terrain is
dynamically changing making it necessary to have multiple
vehicles observing larger areas simultaneously. For example,
UAVs carrying an imaging sensor as payload could fly in
parallel to acquire data related to a terrain while increasing
the area that is being observed/mapped. Fig 1 depicts such
scenario where multiple UAVs need to fly in tight formation

This project has received funding from the European Unions Horizon
2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No 642153.

Communication links

Fig. 1: A typical coastal monitoring scenario where UAVs
fly in a formation with overlapping field of view.

to acquire data that could be stitched together for further
processing. Additionally such a system can augment the
satellite imagery by providing high resolution data of area
of interest. Hence it is interesting to investigate the use of
multiple UAVs for air borne remote sensing and coastal
monitoring applications. In this paper, we address this and
other similar problems where the UAVs are required to
follow a given path with a desired geometric formation
pattern.

Formation control of multi-robot systems involves exten-
sive inter-vehicle information exchange. Most approaches in
the literature assume that the information can be exchanged
over the network without limitations. Such an assumption
is usually not practical. Moreover, the vehicles have an on-
board computer (usually the autopilot) which have limited
computational power and resources. It is therefore, necessary
to develop cooperative motion control methods which take
the limitations of the underlying hardware into the considera-
tion. One possible strategy to address the issue of continuous
communication is to deviate from the traditional periodic
sampling strategies [5], and employ event-based sampling
techniques namely, the event-triggered control [6] and self-
triggered control [7]. In this paper, we aim to reduce the
frequency of information exchange between the UAVs and
also the number of controller updates through the use of



self-triggered control technique. The self-triggered control
strategy is employed at the cooperative control level, whereas
the path following controller is implemented using the tra-
ditional periodic sampling strategy. It is assumed that the
vehicles are connected to one another through bidirectional
communication links and modeled as a fixed, undirected
communication graph.

Event-based sampling strategies have received great at-
tention owing to its applicability from the viewpoint of the
embedded control systems. It is mainly aimed at reducing
the frequency of control computations and in the context
of networked control systems, the frequency of transmission
over the network. In the event-triggered case, this is achieved
through the use of a triggering condition which usually
is a function of the state of the system. The controller is
executed when the triggering condition is satisfied. Clearly,
the triggering condition has to be monitored continuously,
which implies continuous sensing/communication. This lim-
itation can be mitigated through the use of self-triggered
control methods [7]. Significant research has been done and
results are available for standalone systems. See [8] and the
references therein for an extensive survey. However, decen-
tralized event-based control in the context of multi-agent
systems is still an open research topic. Most of the results
have been limited to the first order consensus problem. One
such pioneering work is presented in [9], [10]. Other works
include [11], [12], where a decentralized, time dependent
triggering condition is employed. Clearly, the problem of
formation control, more specifically, CPF control of UAVs,
in an event-based control framework provides plenty of
scope for research. In this paper, a self-triggered, decentral-
ized, CPF controller is developed for multiple UAVs. Our
work builds on the results presented in [3], [4], [9], [13].
Simulation results are provided to illustrate the efficacy of
the proposed approach. It is shown that the proposed self-
triggered CPF control strategy results in significant reduction
of control updates and frequency of information exchange
over network when compared to the conventional time-
triggered implementation.

Additionally, we also provide formal guarantees of sta-
bility and convergence. More precisely, using the Input-to-
State Stability (ISS) framework [14], we show that the Path
following and Cooperative control subsystems can be viewed
as cascade of two ISS systems and hence the overall system
is ISS.

The rest of the paper is organized as follows. Section II
describes the model used for control design and a Lyapunov
based Path Following controller for a fixed wing UAV in the
presence of state estimation errors. Section III proposes the
event-triggered Cooperative controller and shows ISS with
respect to the measurement errors arising out of event-based
communication between the UAV. Section IV, combines
the results of previous two subsections and show that the
overall CPF is ISS in presence of UAV internal dynamics,
estimation errors and measurement errors arising out of
the triggering condition of the event-triggered controller.
Simulation results are provided and discussed in Section V

followed by conclusions in Section VI.

Notations and Definitions: The euclidean norm and the
induced matrix norm is represented as ‖ . ‖. Set of non-
negative integers is represented as Z≥0. The Kronecker
product is denoted by ⊗. A continuous function α : [0, a)→
[0,∞) is said to belong to class K if it is strictly increasing
and α(0) = 0. Additionally it is said to belong to class K∞
if a =∞ and α(r)→∞ as r →∞. A continuous function
β : [0, a) × [0,∞) → [0,∞) is said to belong to class KL,
if for each fixed s, the mapping β(r, s) belongs to class K
with respect to r and, for each fixed r, the mapping β(r, s) is
decreasing with respect to s and β(r, s)→ 0 as s→∞. The
system ẋ = f(t, x, u) where f : [0,∞) × Rn × Rm → Rn
is piecewise continuous in t and locally Lipschitz in x and
u, is said to be Input-to-State Stable (ISS) if there exist a
class KL function β and a class K function γ such that for
any initial time t0, initial state x(t0) and any bounded input
u(t), the solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ

(
sup

t0≤τ≤t
‖u(τ)‖

)
(1)

II. UAV MODEL AND PATH FOLLOWING CONTROL

In this section, we formulate and present a nonlinear con-
troller which solves the Path Following (PF) for a fixed wing
UAV. In the following we briefly describe the UAV model
used for controller design, followed by problem formulation
and controller design.

A. UAV Model

For control design purpose, a kinematic model of the fixed-
wing UAV is used and it is assumed that the autopilot on-
board the aircraft is able to track the reference control com-
mands generated by the PF controller. We use the planar UAV
kinematic model presented in [15] and inspired by [3], [16]
develop a path following controller for 2D case assuming that
the UAV maintains a constant altitude during flight. Consider
two right handed frame of references, namely, the Inertial
frame {I} which is a fixed reference frame and a Body frame
{B} which is attached to the UAV, with its x-axis pointing
towards the direction of travel (longitudinal direction). The
UAV kinematic model is then given by

ṗ(t) = R(ψ)v(t) (2)

Ṙ(ψ) = R(ψ)S(ω)

ω =
g tanφr
vf

(3)

where p(t) ∈ R2 is the 2D position of the UAV i.e., the
origin of {B} with respect to {I}, v(t) = [vf (t), 0]T is
the input velocity vector expressed in the {B} frame. It
can be noted that the longitudinal velocity is denoted by vf ,
whereas the lateral velocity is 0. The matrix R(ψ) ∈ SO(2)
is the rotation matrix parameterized with the yaw angle ψ.
S(ω(t)) ∈ so(2) is a skew symmetric matrix with input
angular velocity ω ∈ R. The control inputs for the vehicle
are u(t) = [vf , φr]

T . The yaw rate is provided by the



reference roll angle φr through the static map given by (3)
and g is acceleration due to gravity. Considering ω to be
the intermediate control input to be designed, the references
for the roll command can be obtained by inverting the static
map (3). The static map (3) is invertible assuming that the
airspeed command of the aircraft vf is non-zero. Such an
assumption is valid for a fixed-wing aircraft in flight.
Remark 1. The planar UAV kinematics (2) is reduced to
the well known unicycle kinematics by considering the
intermediate control input to be ω and using (3) to obtain
roll reference command φr. The control design for an UAV
can then proceed as though a controller is being designed
for an unicycle robot.

B. Problem Formulation

The Self-triggered CPF problem can be decomposed into
two specific sub-problems, namely, the Path Following (PF)
problem (solved in the current section) and the Self-triggered
Cooperative Control (CC) problem (described in the next
section).
Problem 1 (Path Following). Consider a given reference
geometric path pd(γ) : R → R2 parameterized by the path
variable γ ∈ R, with a desired speed assignment vd(γ) ∈ R.
The path following problem is to design a feedback control
law u(t) such that the path following error, ‖p − pd(γ)‖
converges to an arbitrary small neighborhood of the origin
as t→∞. Furthermore, the UAV has to satisfy the desired
speed assignment, ‖γ̇ − vd(γ)‖ → 0 as t→∞.
Remark 2. The progression of γ is equivalent to the progres-
sion of a virtual vehicle along the given path. The control
objective is to steer the actual vehicle towards this virtual
vehicle that is conveniently moving through the path, thereby
solving the path following problem.

C. Path Following Control Design

We follow the controller presented in [16] and define
an error variable e = RT (θ)(p − pd(γ)) − ε, where ε =
[ε1 ε2]T is a given small vector (see Remark 3). The error
dynamics of the path following system is given by

ė = ṘT (θ)(p− pd(γ)) +RT (θ)(ṗ− ṗd(γ)) (4)

= −S(ω)e + ∆u−RT (θ)ṗd(γ)

= −S(ω)e + ∆u−RT (θ)
∂pd(γ)

∂γ
[vd(γ) + vr]

where ∆ =

[
1 −ε2
0 ε1

]
and we have imposed the following

condition (which will be explained in the next section) for
the dynamics of path parameter γ

γ̇ = vd(γ) + vr (5)

where vr is the formation speed actuation signal that will
be viewed as an input control signal for the coordination
system. Consider now the realistic situation that e(t) is not
precisely known, but through the UAV sensors it is possible
to obtain an estimate of e(t), denoted as ê(t). Let ẽ = ê−e
be the estimation error and assume that ε is selected such

that ∆ is invertible and the term |∂pd

∂γ | is bounded. Then, the
following result holds.

Theorem 1 (Path Following). Given the error dynamics for
the path following system described by (4), the control law

u = ∆−1
(
−Kpê +RT (θ)

∂pd(γ)

∂γ
vd(γ)

)
(6)

makes the closed-loop system Input-to-State Stable (ISS)
with respect to the estimation error ẽ(t) and the formation
speed actuation signal vr(t). Moreover, there exists class K
functions α1, α2, α3, α4 and an ISS Lyapunov function V (e)
such that

α1(‖e‖) ≤ V (e) ≤ α2(‖e‖) (7)

V̇ (e) ≤ −α3(e) ∀ ‖e‖ ≥ α4(‖d‖) > 0 (8)

where d = [ẽT vr]
T .

Proof. Consider the ISS Lyapunov function

V (e) =
1

2
eTe

Taking the time derivative and using (4) - (6), we have

V̇ = eT ė

= eT
(
−S(ω)e + ∆u−RT (θ)

∂pd(γ)

∂γ
[vd(γ) + vr]

)
= −eTS(ω)e− eTKpê− eTRT (θ)

∂pd(γ)

∂γ
vr

= −eTKp(e + ẽ)− eTRT (θ)
∂pd(γ)

∂γ
vr

= −eTKpe− eT K̄d

= −eTKpe + βeTe− βeTe− eT K̄d

≤ −λmin(Kp − βI)‖e‖2 ∀ ‖e‖ ≥ ‖K̄‖‖d‖
β

where β > 0 is a constant chosen such that Kp − βI > 0,

K̄ =
[
Kp RT (θ)∂pd

∂γ

]
and d =

[
ẽ
vr

]
. Consequently,

the system (4) with controller (6) is ISS with respect to d
(Theorem 4.19, [17]).

Remark 3. It must be noted that if ε = 0, we do not have
direct control over the heading (and hence the roll angle) of
the UAV i.e., the control input ω does not appear in the error
dynamics (4). Hence, it is necessary to have the condition
ε 6= 0 satisfied for this controller. Note however that when the
error e(t) converges to zero, this implies that ‖p−pd(γ)‖ →
‖ε‖ provided that ‖d‖ → 0 as t→∞.

III. SELF-TRIGGERED COOPERATIVE CONTROLLER

In this section, we develop an algorithm for implemen-
tation of self-triggered consensus controller. In order to
develop a self-triggered controller, we follow the work of
[13] and first design an event-triggered controller followed by
the development of a self-triggered implementation from the
triggering condition. However, we differ in the convergence
analysis of [13] where here we prove that the event-triggered
controller is ISS with respect to the measurement errors. The



background information necessary for derivation of results
for the self-triggered cooperative controller is presented in
the following subsection followed by the problem formula-
tion. Finally, we conclude the section with the event-based
cooperative control design.

A. Graph Theory and Consensus Protocol

Graph theory is used extensively in the literature to model
the underlying communication network among the group of
robots. References [18], [19] form a good source for results
on graph theory and their application for cooperative control
and consensus in multi-agent systems. An undirected graph is
defined as a pair G = (V,E), where V = {vi|i = 1, · · · , N}
is the vertex set with each vertex representing a robot in a
multi-robot system. The set E ⊆ V × V = {(vi, vj)|i, j =
1, 2, · · · , N and i 6= j} is called the Edge set. Vertices
vi and vj are said to be adjacent if (vi, vj) ∈ E, that
is, vi can communicate with vj and vice versa in case of
undirected graphs. The adjacency relations are represented
by the adjacency matrix A ∈ RN×N , defined as

aij :=

{
1 if (vi, vj) ∈ E
0 otherwise

The neighborhood of the vertex vi is defined as the set
Ni = {vj ∈ V |(vi, vj) ∈ E} and the cardinality of the
neighborhood set is the degree of the given vertex, d(vi).
The degree matrix, D of the graph G is a diagonal matrix,
containing the vertex-degrees of G on the diagonal. The
graph Laplacian L defined as L = D−A, is one of the im-
portant matrices used in the consensus algorithms described
in the following subsection. For an undirected graph, the
Laplacian is symmetric and positive semi-definite; hence its
real eigenvalues can be ordered as λ1(L) ≤ λ2(L) ≤ · · · ≤
λN (L). A graph is connected if λ1(L) = 0 and λ2(L) > 0.

Consider a set of N agents with single integrator dynamics

γ̇i = ui ∀ i = 1, · · · , N (9)

where γ ∈ R and u ∈ R. Furthermore, assume that these
agents are connected to each other over a static network
modeled as an undirected graph G. The following theorem
from [18] provides the result for consensus.

Theorem 2 (Consensus). The set of N agents modeled as (9)
converge to an agreement set defined by A = {γ ∈ RN |γi =
γj ∀i, j} under the consensus protocol

γ̇i = −
∑
j∈Ni

(γi − γj) , i = 1, · · · , N (10)

only if the graph G is connected. Moreover, the rate of
convergence is dictated by λ2(L).

Remark 4. The consensus protocol (10), is a distributed
law and depends only on the agent’s own measurements
and that of its neighbors. For the purpose of analysis, the
agent states can be stacked together into a single vector
γ = [γ1, γ2, · · · , γN ]T . The consensus protocol (10) can
equivalently be written as

γ̇ = −Lγ (11)

where L is graph Laplacian.

Remark 5. The agents under the consensus protocol (10) or
(11) converges to the initial average of the states i.e., γ(t)→
1Tγ(0)
N 1 as t → ∞, where vector 1 is a N -dimensional

vector with all entries valued at 1 and corresponds to the
eigenvector of λ1(L) = 0.

B. Problem Formulation

Problem 2 (Self-triggered Cooperative Control). Consider
a group of N vehicles and associate with each one, a
desired reference path pid(γi) parameterized by γi for i =
1, 2, · · · , N . It is assumed that each vehicle is able to follow
the specified reference path using a path following controller.
The cooperative control objective consists in designing a de-
centralized, self-triggered control law such that the position
of the virtual vehicles along the reference path maintains
a desired formation. Mathematically, the objective can be
specified as ‖γi − γj‖ → 0 for all i, j = 1, · · · , N and
i 6= j as t → ∞. Additionally, we require that the speed
of the virtual vehicle matches the desired formation speed
assignment vd(γi) i.e., ‖γ̇i − vd(γi)‖ → 0 for all i =
1, · · · , N as t→∞.

In order to achieve this objective, we propose to set the
evolution of γi as

γ̇i = vd(γi) + vir (12)

where vir(t) is a new control variable. The control objective
is to compute the corrective action vir(t) = vir(t

i
k) for all

t ∈
⋃
k∈Z≥0

[tik, t
i
k+1) where tik is the time instant at which

event occurs for agent i.
Additionally, another objective is to compute the next

time instant tik+1 at which the event should occur, thereby
triggering the controller update and transmission over the
network. The candidate event time can be selected as

tik+1 = tik + max{τ ik, bi} (13)

where bi is a lower bound and hence needs to be positive
in order to have a zeno free computation of next event time
instant. τ ik is computed later in this section, such that the
stability of the system is not compromised.

C. ISS of the Event-triggered Cooperative Controller

We start with design of decentralized, event triggered
consensus controller similar to the one presented in [20]
and prove that the result holds in presence of a desired
formation speed specification (12). Additionally, we also
prove the ISS of the event-triggered consensus controller
with respect to the measurement error arising out of the
triggering condition. Given the single integrator model (9),
the distributed consensus protocol can be written as,

γ̇i = −
∑
j∈Ni

(γi − γj) ∀ i = 1, · · · , N

= −qi(t)



Introduce the event time for the agent i as tik and a measure-
ment error, q̃i(t) = qi(t

i
k)−q(t) for all t ∈

⋃
k∈Z≥0[tik, t

i
k+1).

The event-triggered controller for agent i is

ui(t) = −qi(tik) ∀ t ∈
⋃

k∈Z≥0

[tik, t
i
k+1) (14)

In order to prove the ISS of the event-triggered controller,
define the disagreement vector [19], as1

δ = γ − α1 (15)

where α = (1/N)1Tγ is an invariant for the consensus
problem and 1T δ = 0. Consider the vector of states and
measurement error stacked together, γ = [γ1, γ2, · · · , γN ]T ,
q = [q1, q2, · · · , qN ]T and q̃ = [q̃1, q̃2, · · · , q̃N ]T . The
disagreement vector dynamics satisfies

δ̇ = γ̇ − 1

N
1T γ̇1 (16)

= −(q + q̃) +
1

N
1T (q + q̃)1

= −(q + q̃) + q̄1

where q̄ = (1/N)1T q̃ and 1Tq = 0 since q = Lγ.

Remark 6. In fact it is easy to see that α is an invariant quan-
tity. Differentiating α we have α̇ = 1

N 1T γ̇ = − 1
N 1TLγ =

0.

Remark 7. Since α is an invariant and L1 = 0, the relation
q = Lδ holds.

Lemma 1 (Algebraic connectivity of graphs). Let G
be an undirected graph with Laplacian L, then, λ2 =
min1T δ=0

δTLδ
δT δ

with λ2 = λ2(L), i.e,

δTLδ ≥ λ2‖δ‖2

Similarly, λmax = maxδ 6=0
δTLδ
δT δ

with λmax = λmax(L) i.e.,

δTLδ ≤ λmax‖δ‖2

Proof. Since the Graph Laplacian L is a symmetric matrix,
the proof follows from direct application of Courant-Fischer
theorem from [21].

Theorem 3 (Event-triggered Consensus). The event trig-
gered consensus controller (14) achieves consensus for the
system (9), given the triggering condition

‖q̃i(t)‖ ≤ βi‖qi(t)‖ (17)

for 0 < βi < 1. Additionally, the controller is ISS with
respect to the measurement error q̃i(t).

Proof. Consider the candidate ISS Lyapunov function

VCC(δ) =
1

2
δT δ

1The notation of continuous dependence variables on time is dropped for
the sake of brevity.

Taking the derivative with respect to time, using (16) and the
relation q = Lδ, yields

V̇CC(δ) = δT δ̇

= δT [−(q + q̃) + q̄1]

= −δTLδ − δT q̃
= −δTLδ + βδTLδ − βδTLδ − δT q̃
= −(1− β)δTLδ − βδTLδ − δT q̃
≤ −(1− β)λ2(L)‖δ‖2 ∀ − δT q̃ ≤ βδTLδ
≤ −λCCVCC(δ) ∀ ‖q̃‖ ≤ β‖Lδ‖ = β‖q‖

where 0 < β < 1 and λCC = (1− β)2λ2(L). Consequently,
we can conclude ISS of system (9) with the event triggered
consensus controller (14) given the event triggering condition
‖q̃‖ ≤ β‖Lδ‖ = β‖q‖. Since the objective is to derive the
decentralized controller and hence the triggering condition,
the centralized triggering condition can be written in decen-
tralized manner for each agent i as

‖q̃i(t)‖ ≤ βi‖qi(t)‖ = βi‖(Lδ)i‖

where (Lδ)i is ith component of the vector Lδ. βi can be
chosen as β/N . Hence the system (9) under the decentralized
event-triggered consensus controller (14) is ISS with respect
to the measurement error q̃i(t).

Given the result for the event-triggered consensus, the
cooperative controller that solves the event-triggered version
of the Problem 2 will be developed in the following. Note
that the cooperative control problem is a consensus problem
with an additional desired speed assignment for each agent.

Proposition 1. Given the dynamics of the path variable (12),
the event-triggered, decentralized, cooperative control law

vir(t) = −
∑
j∈Ni

(γi(t
i
k)− γj(tik)) (18)

defined over t ∈
⋃
k∈Z≥0

[tik, t
i
k+1) along with the triggering

condition (17) solves the Problem 2 and does so exponen-
tially fast. Additionally, the disagreement error δ(t) is ISS
with respect to the measurement error q̃(t)

Proof. Consider the dynamics of the path variable given by

γ̇ = vd(γ)1 + vr

The cooperative control law (18) can be written in compact
form as

vr = −q(tk) = −(q + q̃)

Consequently, the dynamics of the path variable satisfies

γ̇ = vd(γ)1− (q + q̃)



The dynamics of the disagreement vector δ in presence of
desired speed assignment is then given as

δ̇(t) = γ̇ − 1

N
1T γ̇1

= vd(γ)1− (q + q̃)− 1

N
1T [vd(γ)1− (q + q̃)]1

= vd(γ)1− (q + q̃)− vd(γ)1 +
1

N
1T (q + q̃)1

= −(q + q̃) + q̄1

Clearly the disagreement vector dynamics remain unchanged
in the presence of the desired speed assignment vd(γ).
Hence, using the Lyapunov function (1/2)δT δ and following
the proof of Theorem 3, we can conclude this proposi-
tion.

D. Self-triggered Cooperative Control Algorithm

From the derived results of decentralized event-triggered
consensus, where we have shown that consensus holds in
presence of a desired formation speed assignment, the event
triggering condition (17) can now be used to compute the
next possible event-time instant, which is necessary to have
a self-triggered controller implementation. We follow the
steps presented in [13]. As mentioned earlier, the problem
of computation of the next event time instant reduces to
the computation of upper and lower bound to the inter
event time. Using (13) to compute the next event time,
eliminates the possibility of exhibition of zeno behavior by
any agent i. The inter-event time is bounded from below by
a strictly positive value bi. The lower bound is computed as
bi = β

N(1+β) , see [13] for detailed computation.
In order to compute the next possible event time τ ik,

consider the time evolution of q̃i(t) and qi(t) for each agent i
over the time interval [tik, t

i
k+1). From the definition of qi(t),

it is clear that it is differentiable and satisfies

q̇i(t) = −
∑
j∈Ni

γ̇i(t)− γ̇j(t)

= −
∑
j∈Ni

qi(t
i
ki(t)

)− qj(tjkj(t))

= ξi(t)

where ki(t) = arg maxk∈Z≥0
{tik|tik ≤ t}, qi(tiki(t)) is the

value of the state qi of agent i at the latest event time tiki(t)
before the current time t and ξi(t) is an auxiliary variable.
Computation of τ ik is based on the information available to
the agent i in the interval [tik, t

i
k+1). From the definition of

q̃i(t), we know that it is continuous in the interval [tik, t
i
k+1)

and ˙̃qi(t) = −q̇i(t) = −ξi(t). Since q̃i(t
i
k) = 0, we can

compute q̃i(t) as

q̃i(t) = −
∫ t

tik

ξi(s)ds ∀ t > tik (19)

Consequently, qi(t) can be computed as

qi(t) = qi(t
i
k) +

∫ t

tik

ξi(s)ds ∀ t > tik (20)

The key issue in determining the next event time instant
tik+1 = tik+max{bi, τ ik} and hence τ ik is computation of the
term Ξ(t) :=

∫ t
tik
ξi(s)ds. Note that ξi(t) is always piecewise

constant and following the procedure of [13], we obtain the
following equations to compute Ξ(t)

Ξ(t) =

p∑
l=1

ξi(τl−1)(τl − τl−1) + ξi(τp)(t− τp) (21)

The term Ξ(t) is written as

Ξ(t) = Ξp + ξi(τp)(t− τp) (22)

where Ξ0(t) = 0, Ξp =
∑p
l=1 ξi(τl−1)(τl − τl−1) and τp

captures the latest time instant at which any measurement is
received from the neighbor of vehicle i. Consequently, the
variables qi(t) and q̃i(t) can be computed using (20) and (19)
respectively. The event triggering condition ‖q̃i‖ ≤ βi‖qi‖
for each agent i equivalent to

‖Ξ(t)‖ ≤ βi‖qi(tik) + Ξ(t)‖ (23)

The next event time is defined as

tik+1 = inf{t > tik| ‖Ξ(t)‖ = βi‖qi(tik) + Ξ(t)‖} (24)

In order to avoid repeated checking of the triggering condi-
tion, let y = t− τp and ξp = ξi(τp), then

‖Ξp + ξpy‖ = βi‖qi(tik) + Ξp + ξpy‖ (25)

After some algebraic manipulations, the triggering condition
given above can be written as a quadratic equation of y as

ay2 + by + c = 0

where

a = (1− β2
i )ξTp ξp

b = 2ξTp Ξp − 2β2
i ξ
T
p (qi(t

i
k) + Ξp)

c = ΞTp Ξp − β2
i (qi(t

i
k) + Ξp)

T (qi(t
i
k) + Ξp)

In [13], it is shown that the above given quadratic equation
has exactly one positive solution given by yp = (−b +√
b2 − 4ac)/2a provided that ξp 6= 0. The next candidate

event time is then given as tik+1 = yp + τp.
At each event time tik, agent i receives its neighbor’s states

γj , j ∈ Ni and computes the control input vir(t) according to
the equation (18). It also computes the next event time tik+1

according to equation (13) using the computed average qi(tik)
and previously received qj(t

j
kj(t)

). Finally it transmits over
the network, qi(tik) which would be used by its neighbors for
control computation and event generation. Consequently at
each event there are 2Ni + 1 data exchanges on each agent.
The iterative algorithm used to implement the self triggered
controller is given in [13] and requires that the receivers on
the UAVs are always active.



IV. SELF TRIGGERED CPF

In Section II we have proved ISS of the Path following
system in presence of estimation errors and in Section III, the
ISS of the event-based cooperative controller. In this section,
we present the main result of the paper, where we view the
two subsystems (PF and CC system) as a cascade of two ISS
systems. To this end, consider N Path Following subsystems,
each one ISS with respect to the inputs as shown in Section
II, then we can construct a single Lyapunov function VPF(ε)
by stacking the error states into a vector ε = [eT1 , · · · , eTN ]T .
Similarly define the estimation error ε̃. The single, combined
ISS Lyapunov function for the Path Following subsystems
can be written as

VPF(ε) =
1

2
εTε (26)

which satisfies

V̇PF(ε) ≤ −λPFVPF(ε) ∀ ‖ε‖ ≥ ‖IN ⊗ K̄‖‖d‖
β

(27)

where λPF = 2λmin(Kp − βI). Clearly the combined
path following system is still ISS with respect to the input
perturbations d = [dT1 , · · · ,dTN ]T . The main result of this
paper is stated in the following theorem.

Theorem 4. The path following controller (6) along with the
self-triggered cooperative controller of equation (18), col-
lectively termed as the self-triggered CPF controller makes
the system with dynamics (4) and (12) ISS with respect
to d. Additionally the cooperative controllers are executed
in decentralized fashion on each agent at time instants
computed by (13).

Proof. The proof follows directly from the results of Theo-
rem 1 and Proposition 1, since the overall CPF system can be
viewed as cascaded interconnection of two ISS subsystems.
More precisely, construct a combined Lyapunov function

V (ε, δ) =
1

2
εTε+

1

2
δT δ

Taking the time derivative and proceeding as before we have

V̇ (ε, δ) ≤ −λPFVPF − λCCVCC ∀ ‖ε‖ ≥
‖IN ⊗ K̄‖‖d‖

β

‖q̃‖ ≤ β‖Lδ‖

Clearly, the system is ISS with respect to formation speed
actuation signal vr and the estimation error ε̃, collectively
written as d since, the condition ‖q̃‖ ≤ β‖Lδ‖ is enforced
by the self-triggered implementation.

V. SIMULATION RESULTS

Having established the main results, the proposed control
algorithms are validated through simulations in this section.
Simulations are performed in Matlab using the VirtualArena2

toolbox [22].

2A Matlab based simulation environment developed by Andrea Alessan-
dretti for simulation of decentralized controllers for multi-agent systems.
Visit https://github.com/andreaalessandretti/VirtualArena

A. Path Following

The simulation results of the path following controller
developed in section II are presented and the performance
of the controller is illustrated taking into account the effects
of the inner-loop autopilots, and measurement noise that is
reflected by having nonzero state estimation errors.

The path following controller (6) assumes that the control
commands, u(t) = [vf , φr]

T are tracked perfectly. Such
an assumption does not hold in practice and therefore we
consider that the autopilots characteristics in closed- loop
can be locally described (for simplicity) by a first order
dynamics. The model used for simulating the UAV is given
by

ṗx = v cosψ (28)
ṗy = v sinψ

ψ̇ =
g tanφ

v
v̇ = −λvv + λvvf

φ̇ = −λφφ+ λφφr

where λv and λφ are positive constants. The control inputs
vf and φr are the command inputs to the internal dynamics.
Note that the roll angle command φr is generated from
intermediate control command ω through arctan(vfω, g). In
the above model it is assumed that the UAV autopilot keeps
the sideslip angle and the flight path angle near zero over
the entire maneuver of the aircraft. Also we assume planar
flight at a constant altitude. Additionally, zero mean, white
Gaussian noise is injected into the error states e(t) in order
to simulate the estimated states ê(t) which is assumed to be
obtained from the navigation system on-board the UAV.

We select three scenarios with λv = λφ = {5, 10, 15},
to denote the different time constants of the first order
internal dynamics of the UAV and analyze the performance
of the path following controller in presence of the estimation
errors. The simulations were conducted for a period of
10 seconds with discretization of 0.01 seconds with the
following parameters: Kp = I , ε = [0.3 0]T , and desired
speed vd = 5 [m/s]. From Fig. 2a it can be seen that the
path following controller performs adequately and converges
to the desired path in the presence of internal dynamics
and estimation errors. However, the effects of the inner-loop
autopilot dynamics (not considered in control design) can be
seen in terms of oscillations during the transients for slower
internal dynamics. Also the error states are as expected more
oscillatory, especially in the lateral direction of the UAV for
the slower internal dynamics case as can be seen from Fig
2c. The error states e(t) converge to zero and are bounded
around zero in the presence of the bounded estimation errors
ẽ(t). This implies that ‖p − pd‖ → ‖ε‖. More precisely,
the UAV lags behind the virtual vehicle by a distance of ε1
[m]. Clearly the path following controller is able to steer the
UAV towards the path in the presence of internal dynamics
and estimation errors while achieving the desired speed of 5
[m/s] (see Fig 2b)



−5 0 5 10
0

5

10

15

X [m]

Y
 [m

]

 

 

λ
v
 = 5

λ
v
 = 10

λ
v
 = 15

p
d

(a) X - Y position of the UAV

0 2 4 6 8 10
2

4

6

8

v f [m
/s

]

0 2 4 6 8 10
−50

0

50

100

Time [s]

φ r [d
eg

]

 

 

λ
v
 = 5 λ

v
 = 10 λ

v
 = 15

(b) Applied control inputs

0 2 4 6 8 10
−2

−1

0

1

e x [m
]

0 2 4 6 8 10
−1

0

1

Time [s]

e y [m
]

 

 

λ
v
 = 5 λ

v
 = 10 λ

v
 = 15

(c) Error states e(t)

Fig. 2: Path following control performance with different internal dynamics λv = λφ = {5, 10, 15} and bounded estimation
error.

B. Self-triggered CPF

In this subsection, the simulation results of Self-triggered
CPF are presented and discussed. The simulation settings
of the Path following controller are the same as presented
in previous subsections. The internal dynamics of the UAVs
were set to λv = λφ = 15. The simulation was conducted
for a period of 20 seconds with N = 3 agents. Each UAV
was assigned a straight line path separated by distance of
10, 20 and 30 meters respectively. All the UAVs start at
origin (with different altitudes, not considered in this paper)
as the initial condition. The corresponding initial values
of the path variables were set as γ = [0 2 4]T . The
tuning parameter specific to the triggering condition of the
cooperative controller was set to βi = 1/N for i = {1, 2, 3}
which is eventually used to compute the lower bound to the
inter-event time. The underlying communication topology is
considered to be fixed with UAV 1 communicating with UAV
2 and UAV 3 through bidirectional links. There is no direct
communication between UAV 2 and UAV 3.

Fig 3a shows the plot of UAV positions for the given
straight line formation. As it can be seen, the vehicles are
able to follow the desired path and also converge to the
desired formation. Note that the path following controllers
are being simulated on each UAV in the presence of internal
dynamics and estimation errors. The cooperation among
the virtual vehicles are evident in Fig 3b, where the error
between the path variable γi for i = {1, 2, 3} of each UAV
asymptotically converges to zero. The formation reaches the
desired speed assignment vd(γ) = 5 [m/s] as can be seen
from Fig 3c. All three UAVs achieve the desired speed as
expected.

The motivation in this research is to reduce the frequency
of controller executions and exchange of information among
the agents at the cooperative control level. Fig 3d shows the
plot of event time instants for the UAVs. In an ideal, periodic,
time-triggered implementation of the CPF, a simulation of 20
seconds with sampling period of 0.01 seconds would require
20/0.01 = 2000 controller executions and instances of infor-
mation exchanges. In contrast with the periodic implemen-
tation the self-triggered cooperative controller simulated in

0 2 4 6 8 10
0

1

2

0 2 4 6 8 10
0

0.5

1

0 2 4 6 8 10
0

1

2

Time [s]

N
or

m
 o

f m
ea

su
re

m
en

t e
rr

or

Fig. 4: Plot of triggering condition for N = 3 agents

this paper generates 19, 16 and 20 events for UAV 1, 2 and 3
respectively. The results are not surprising, as the cooperative
controller does not need to be executed once the consensus is
achieved. Another important observation is that the events are
not synchronized showing the true decentralized operation of
the agents. The results obtained are encouraging, especially
from the point of view of embedded control systems. The
controllers can be scheduled to be executed independently
and hence the computational resource could be allocated for
more demanding tasks.

Fig 4 shows the plot of the triggering condition (17) for
all the three UAVs. Clearly, the self triggered algorithm is
able to replicate the triggering condition arising out of the
event-triggered controller presented in Section III. It can be
seen that the measurement error q̃i accumulates until it hits
the bound βi‖qi‖ and resets to zero indicating the occurrence
of the event. The measurement errors exceeed the bounds in
the plot and this discrepancy can be attributed to the fact that
our analysis has been in continuous time and simulation in
matlab always happens with certain discretization and hence
subjected to numerical errors. Important fact to notice is
that the bound and as well as the norm of measurement



−50 0 50
0

20

40

60

80

100

X [m]

Y
 [m

]

 

 

UAV1
UAV2
UAV3

(a) X-Y position plot of UAVs

0 5 10 15 20
−4

−3

−2

−1

0

1

Time [s]

γ i −
 γ

j

 

 

γ
1
 − γ

2

γ
1
 − γ

3

γ
2
 − γ

3

(b) Error in virtual vehicle positions

0 5 10 15 20
0

2

4

6

8

10

12

Time [s]

γ̇
i

 

 
γ̇1
γ̇2
γ̇3

(c) Virtual vehicle speed

0 5 10 15 20
0

5

10

15

20

Time [s]

E
ve

nt
 ti

m
e 

[s
]

 

 

UAV1
UAV2
UAV3

(d) Event times

Fig. 3: Performance of the Self-triggered Cooperative Path Following Control for N = 3 UAVs

errors asymptotically converge to zero indicating the vehicles
reaches a consensus. Consequently the number of events
during steady state is drastically reduced.

VI. CONCLUSION

A decentralized, self-triggered CPF controller was devel-
oped for fixed wing UAVs and illustrated through computer
simulations considering autopilot internal dynamics of UAV
and estimation errors. A path following controller and event-
triggered cooperative controller was developed and the stabil-
ity properties were proven using the ISS framework. A self-
triggered cooperative control implementation was applied
to solve the CPF control problem for fixed wing UAVs.
The stability of overall system was proven by using the
fact that the path following subsystem and the cooperative
control subsystem can be viewed as cascade connection of
two ISS systems. Through simulations it was shown that
the self-triggered cooperative controller achieve consensus
with significantly less number of communication and control

updates in comparison with the periodic, time-triggered
implementations. The proposed CPF control method uses
several simplifying assumptions such as lossless communi-
cation links, static communication topology which do not
hold in practice. The communication network is plagued by
intermittent communication, packet drops, switiching topol-
ogy and delays which need to be taken into consideration
during the control design.

The results presented in the current paper, exposes many
interesting problems that could be addressed. Investigation of
the self-triggered CPF in presence of external disturbances
like wind gusts and failure of one of more UAVs would be
an interesting extension to the present work. Additionally
many practical issues regarding the communication network
could be addressed. Experimental validation of the proposed
method is perhaps the most important extension to this work.

REFERENCES

[1] V. V. Klemas, “Coastal and environmental remote sensing
from unmanned aerial vehicles: An overview,” Journal of



Coastal Research, pp. 1260–1267, 2015. [Online]. Available:
http://dx.doi.org/10.2112/JCOASTRES-D-15-00005.1

[2] K. Klausen, T. I. Fossen, T. A. Johansen, and A. P. Aguiar, “Coop-
erative path-following for multirotor uavs with a suspended payload,”
in 2015 IEEE Conference on Control Applications (CCA), Sept 2015,
pp. 1354–1360.

[3] A. P. Aguiar and J. P. Hespanha, “Trajectory-tracking and path-
following of underactuated autonomous vehicles with parametric mod-
eling uncertainty,” IEEE Transactions on Automatic Control, vol. 52,
no. 8, pp. 1362–1379, Aug 2007.

[4] R. Ghabcheloo, A. P. Aguiar, A. Pascoal, C. Silvestre, I. Kaminer,
and J. Hespanha, “Coordinated path-following in the presence of
communication losses and time delays,” SIAM Journal on Control
and Optimization, vol. 48, no. 1, pp. 234–265, 2009. [Online].
Available: http://dx.doi.org/10.1137/060678993

[5] K. J. Åström and B. Wittenmark, Computer-controlled systems: theory
and design. Courier Corporation, 2013.

[6] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp.
1680–1685, 2007.

[7] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered
control for nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2030–2042, 2010.

[8] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction
to event-triggered and self-triggered control,” in IEEE 51st Annual
Conference on Decision and Control (CDC). IEEE, 2012, pp. 3270–
3285.

[9] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” IEEE Transactions
on Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2012.

[10] D. V. Dimarogonas and K. H. Johansson, “Event-triggered control for
multi-agent systems,” in Proceedings of the 48th IEEE Conference
on Decision and Control, held jointly with the 28th Chinese Control
Conference CDC/CCC 2009. IEEE, 2009, pp. 7131–7136.

[11] G. S. Seyboth, D. V. Dimarogonas, and K. H. Johansson, “Event-based
broadcasting for multi-agent average consensus,” Automatica, vol. 49,
no. 1, pp. 245–252, 2013.

[12] M. Mazo and P. Tabuada, “Decentralized event-triggered control over
wireless sensor/actuator networks,” IEEE Transactions on Automatic
Control, vol. 56, no. 10, pp. 2456–2461, 2011.

[13] Y. Fan, L. Liu, G. Feng, and Y. Wang, “Self-triggered consensus for
multi-agent systems with zeno-free triggers,” IEEE Transactions on
Automatic Control, vol. 60, no. 10, pp. 2779–2784, 2015.

[14] E. D. Sontag, “Input to state stability: Basic concepts and results,” in
Nonlinear and optimal control theory. Springer, 2008, pp. 163–220.

[15] A. Rucco, A. P. Aguiar, and J. Hauser, “Trajectory optimization
for constrained uavs: A virtual target vehicle approach,” in 2015
International Conference on Unmanned Aircraft Systems (ICUAS),
June 2015, pp. 236–245.

[16] A. Alessandretti, A. P. Aguiar, and J. Colin N., “Trajectory-tracking
and path-following controllers for constrained underactuated vehicles
using model predictive control,” in 2013 European Control Conference
(ECC) July 17-19, 2013, Zurich, Switzerland, 2013, pp. 1371–1376.

[17] H. K. Khalil, Nonlinear systems. Upper Saddle River, (N.J.): Prentice
Hall, 1996. [Online]. Available: http://opac.inria.fr/record=b1091137

[18] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[19] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, Jan 2007.

[20] Y. Fan, G. Feng, Y. Wang, and C. Song, “Distributed event-triggered
control of multi-agent systems with combinational measurements,”
Automatica, vol. 49, no. 2, pp. 671–675, 2013.

[21] R. A. Horn and C. R. Johnson, Eds., Matrix Analysis. New York,
NY, USA: Cambridge University Press, 1986.

[22] A. Alessandretti, A. P. Aguiar, and C. N. Jones, “VirtualArena: An
object-oriented matlab toolkit for control system design and simula-
tion,” in 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), June 2017.


